Battleships - A Game Playing Agent

I. PROBLEM DESCRIPTION

Battleships is a 2-player guessing game originally pub-
lished by the Milton Bradley Company in 1943. Each player
uses two square grids of size 10, one to place the own ships,
one to record the shots fired at the opponent. A total of 10
ships of various sizes has to be placed by every player in
such a way that no two ships occupy adjacent squares. After
the initial placement phase, players alternate in shooting at
enemy ships. The goal of the game is to sink all enemy ships
before one’s own ships are sunk. An example of a board is
shown in Figure 1.

The methods of solving guessing games that include a
search component can have widespread real-world applica-
tions. Many robot-robot or robot-human interactions can be
represented as adversarial games with uncertainty. Gaining
insight into the structure and solution processes with toy
problems such as Battleships will help us apply these meth-
ods to other problems of a similar structure.

II. RELATED WORK

[1] introduces the problem of playing the game Battleships
as a decision problem and proves that it is NP-complete. This
paper, however, provides no insight into how a game playing
agent can be implemented. [2] uses an approach based on
genetic algorithms that adapts to an opponent’s playing style
over multiple games. The drawback of this method is the fact
that the program has to complete a learning phase before it
can play efficiently. [3] presents an extensive software design
document from the initial requirements specification to the
implementation of the game. The artificial intelligence is
rudimentary using simple random initial placements of the
ships and random shots. [4] presents a Java-based imple-
mentation using a strictly rule-based agent. These rules are
hard-coded nested if-else constructs. However, such hard-
coded approaches tend to be inflexible and ill-suited to react
to unforeseen conditions.

III. IMPLEMENTATION

We split the problem into two sections: the ship placement
and the actual game playing. In our hypothesis, the best
possible placement is one that maximizes entropy. As a
result, our algorithm places the ships randomly on the board.
Specifically, for each ship, the program finds and stores all
of the valid positions (up to 2n? on an n x n board) to
place the ship on the board, given the locations of ships that
have already been placed. It then chooses one of these valid
positions at random. For randomness, we used the built-in

Thttp://en.wikipedia.org/wiki/File:Battleship_game board.svg

alsle|n|=

o|lo|~|o

10 |

Fig. 1. Example of a Battleships board.!

C pseudo-random generator rand(), seeded with the system
time at the beginning of the run of the program.

Unlike the previous methods outlined in Section II, we im-
plemented an approach that is more sophisticated than simply
choosing random shots and that requires no knowledge of an
opponent’s playing style, or previous knowledge. Instead of
choosing a move randomly, our algorithm directly attempts to
determine which locations are most likely to contain a ship,
given the belief state we are in as a result of the knowledge
we have obtained from previous attacks.

Our approach is to use Monte Carlo sampling. This
technique has been used in conjunction with game trees
for several games with imperfect information, including
Scrabble and Bridge [5], and more recently has been used
in an Al framework known as Monte Carlo Tree Search
to achieve success with Al for the classic board game Go,
which proved resistant to other Al techniques, as well as
with modern board games such as Settlers of Catan [6].
However, we felt that for Battleships, Monte Carlo sampling
alone (without any game tree) would provide a strong Al
player.

In detail, our algorithm samples the belief state of the
locations of the opponent’s ships /N times. It then chooses
to attack the currently empty location that contains a not-
yet-hit part of a ship in the largest number of these samples.

Sampling the belief state is itself not a trivial task. We
accomplished it as follows:

o Compute a list of the valid board locations for ships of

each size.

o Attempt to place the ships on the board in order from

largest to smallest.

o For the current ship:

1) Choose a location randomly from among the valid
board locations which cover the most possible hits
currently on the board.

2) If the location doesn’t conflict with previously
placed ships, push it onto the stack of placed

ships. Otherwise, remove it from the list of valid
locations.

3) If the list of valid locations becomes empty, pop
the top placed ship off the stack, reset the valid
board locations for all other unplaced ships, and
begin trying to place the just-popped ship instead.

This algorithm is by no means a perfect sampling of the
belief state. In fact, on certain occasions, it will fail to cover
all of the known hits, thus producing a sample not actually
in the belief state. However, this occurs very rarely, in less
than 1 in 1000 samples in practice, although in certain very
rare belief states it may occur with probability close to or
even equal to 1. Nevertheless, in most belief states it is a
good approximation. Moreover, truly perfect sampling would
require computing the entire belief state in order to learn the
probability of a ship covering any particular location. For
an n X n board with s ships, the number of belief states
will be at most (2n2)°. For the classic version of Battleships
(10 x 10 board, 5 ships), this would be 320 billion states,
which is rather infeasible.

IV. EVALUATION

In this section we will outline the reference implemen-
tation presented in [4] that served as our main point of
comparison. The source code is available for free and enabled
us to integrate the Al approach into our implementation. We
will describe the game strategy and artificial intelligence used
in [4] and how we measured the performance of our Monte
Carlo-based agent with respect to the rule-based artificial
intelligence shown in [4] and against a completely randomly
shooting agent.

We evaluated our implementation by competing against
the reference implementation provided in [4]. Since [4]
provided a Java-based implementation, our first approach was
to interface our C++-based implementation with it through
sockets, a common way of achieving language agnostic
interprocess communication. As it turned out though, [4]
lacked one key features that would make automated testing
impossible. Ships had to be placed manually unlike in
our implementation, which features automated, randomized
placement of ships. Since the reference implementation used
object-oriented programming and isolated their Al in its
own class, we ported it to C++ and integrated it into our
implementation. The main idea, a rule-based approach of
playing Battleships using hard-coded conditional statements,
was kept, although we optimized the provided code signifi-
cantly.

In its essence, the Al in [4] uses a pattern database to
search for ships in absence of any recent hits and a method
that seeks to sink a ship once it is found. The pattern database
causes the algorithm to shoot in diagonal lines until it either
finds a ship or completes all shots stored in the pattern
database. At this point, it continues shooting randomly to fill
all left gaps. The patterns and the order of priority are shown
in Fig. 2, where the green positions are tried before blue
(top triangles filled) and red ones (bottom triangles filled).
Once an enemy ship is found, the algorithm searches in the

[o] | ~[a]a]a]w]n]=

=y
o

Fig. 2. Pattern database of reference implementation [4].

TABLE I
RESULTS FOR N = 10 AND 100 TRIALS

Win Rate Avg. | Min. | Max

Monte Carlo | 85 % /88 % | 90.17/87.96 | 74 /75 | 98 /96
Rule-based 15 % 88.16 86 92
Random 12 % 90.48 86 97

neighborhood, i.e. all adjacent squares until the ship is sunk.
We will show in this section and Section V that our algorithm
exhibits superior performance in finding ships and ending the
game successfully.

Table I and II summarize our quantitative results with
regard to win rate and average, minimum, and maximum
number of shots to win over a hundred trials. Note that the
first row contains two datasets separated by slashes. The first
refers to competing against the rule-based agent, whereas the
second one refers to competing against the random agent.
Based on these numerical results, the win rate does not
appear to be correlated to N, the number of samples of the
belief state in the Monte Carlo simulation (see Section III).
One would expect to achieve a higher win rate as N increases.
The contrary is the case, the win rate is 85 % for N = 10
and 75 % for N = 100. We assume that this is an artifact
of a single competition containing 100 trials where the win
rate has not converged to its true value. On the other hand,
one can clearly see the effect of increasing N in the decrease
of the average and minimum number of shots to win (from
90.17 to 84.92 and from 87.96 to 81.67 respectively).

Fig. 3 and Fig. 4 show the number of shots required to
win as a function of trial ¢. In both figures, the red line
marks the trials conducted with N = 10, the black lines refer
to trials with N = 100. Solid lines indicate the measured
values, dashed lines indicate the mean over all won trials. The
data presented in both figures is the same as shown in Table
I and Table II, where Fig. 3 summarizes data obtained by
competing against a rule-based agent and Fig. 4 summarizes
data obtained by competing against a random agent. Note
that the number of won trials is not the same for both datasets
in each figure. The shorter dataset has been padded with the
value of the last won trial in each figure.

V. DISCUSSION

Whereas search seems to be an appropriate tool for
completely observable and deterministic environments, as

TABLE I
RESULTS FOR N = 100 AND 100 TRIALS

Win Rate Avg. | Min. | Max.
Monte Carlo | 75 % / 81 % | 84.92/81.67 | 57/63 | 100/ 99
Rule-based 25 % 37.8 83 99
Random 19 % 93.56 86 100

well as for certain adversarial games, it became clear that
search was not the tool of choice for partially observable
games such as Battleships. After our initial tries to model
Battleships as Ax search with chance nodes and alpha-beta
pruning and a heuristic that takes probabilities into account,
we realized that the number of different belief states was
simply too large. Moreover, unlike many games, we realized
that Battleships is amenable to a greedy strategy. Specifically,
an attack which results in a hit is always better than an attack
that results in a miss, whereas in games such as chess a
move which provides large immediate benefit can end up
being a poor move in the long run. As a result, we felt the
best strategy was simply to determine where on the board an
attack would most likely be successful, which led us into the
realm of probability and probabilistic reasoning. As it turned
out, Monte Carlo sampling methods proved to be suitable
tools for dealing with partially observable environments.
As mentioned in [7], the Monte Carlo approach is part of

Number of Shots to Win

0 20 40 . _60 80 100
Trial i

el
Ga

. 3. Shots required to win against a rule-based agent.

=
[e] J
1
* A -
i
o
<
%) - 4 - -k -- J
u—
o
S
(O]
o J
S
>
Z 60 L L L L
0 20 40 60 80 100

Trial i

Fig. 4. Shots required to win against a randomly acting agent.

a family of algorithms commonly referred to as randomized
sampling algorithms, specifically direct randomized sampling
algorithms. Each variable is sampled in order of size of
the ships and the probability distribution is conditioned on
already assigned values, in our case known hits and misses.
As with any sampling algorithm, we expect the frequency
of specific events (e.g. finding a ship of size s at location
(z,y)) to converge to the sampling probability. Therefore,
we would expect to achieve better results as we increase the
number of samples N. As shown in Table I and Table II we
can see such an improvement in the minimum and average
number of shots it takes to win a game (see Fig. 3 and Fig.
4 for details by trial). These numbers drop significantly as
we increase N from N = 10 to N = 100. While the win
rate decreases as N increases, this may be due solely to the
small sample size.

Finally, while we are pleased with our results, there are
several potential improvements and investigations suggested
by our work. First, other than setting a relative limit of
each move taking no more than 15 seconds on our ma-
chine, we were not particularly concerned with efficiency.
Our algorithm performed well within that limit on classic
Battleships: with 100 Monte Carlo samples, the longest move
we recorded was 200 ms, with most moves taking no more
than 40 ms. However, it would be interesting to see how our
algorithm performs regarding skill and efficiency in a more
generalized version of Battleships, with, say, a 50 x 50 board
and 100 ships. While our code can handle such an input, we
have not yet tested it.

Second, as mentioned in Section III, there are some
hit/miss layouts where our sampling algorithm will almost
never manage to choose a valid sample; that is to say, it will
nearly always place the ships in a configuration where they
fail to cover every known hit on the board. This situation
occurred very rarely in our tests. However, it is a weakness
in the algorithm which could potentially be exploited by
an adversary with clever initial ship layout. It would be
interesting to see if we could find a way to exploit this
potential weakness. Alternatively, it would be nice to find a
way to modify our algorithm to remove this problem without
sacrificing efficiency.

REFERENCES

[1] M. Sevenster, “Battleships as a decision problem,” ICGA Journal,
vol. 27, no. 3, pp. 142-149, 2004.

[2] J. G. Bridon, Z. A. Correll, C. R. Dubler, and Z. K.
Gotsch, “An artificially intelligent battleship player utilizing
adaptive firing and placement strategies,” available Online.

www.cores2.com/files/FinalResearchPaper.pdf.

[3] S. L. Andersen, “Battleship - design and implementation,” 2007, thesis.

[4] A. Ahmed, R. Brown, M. Colmer, D. Harton, K. Doran, and S. Pick-
ford, “Artifical intelligence battleship game,” Available online at
http://code.google.com/p/battleshipaiproject/, source Code only.

[5] I Frank, D. A. Basin, and H. Matsubara, “Finding optimal strategies for
imperfect information games,” in AAAI/IAAI J. Mostow and C. Rich,
Eds. AAAI Press / The MIT Press, 1998, pp. 500-507.

[6] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree
search: A new framework for game ai,” in A/IDE, C. Darken and
M. Mateas, Eds. The AAAI Press, 2008.

[7]1 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Pearson Hall, 2010.

