
Music Genre Classification

I. PROBLEM DESCRIPTION

Music genre classification is widely discussed in the
MIR (Music Information Retrieval) Society and has been
of interest for a variety of reasons, including management of
large music collections. As these collections are becoming
more digital, genre classification is essential for creating
recommendation systems, that can benefit collective music
libraries, social networks, etc. Only limited agreement is
achieved among human annotators when classifying music
by genre and an automatic genre classifier aims to overcome
those limitations by defining a standard for extracting fea-
tures directly from the audio signal for classification. It is
important that we extract the most robust set of features and
establish a reliable ground truth for classifying into genres.

II. RELATED WORK

Talupur et al. [1] describe a neural network approach
that is trained for the classification tasks to determine the
genre of audio files. Feature vectors are extracted using
Fourier Transforms and fed into a neural network classi-
fier. The algorithm - a linear vector quantization network
- in this paper can only distinguish between four genres.
Galkin et al. [2] also use neural networks for classification,
specifically feed-forward neural networks. Their approach is
limited to three genres as classification accuracy would drop
significantly below the mentioned 72% if that number was
increased. Tzanetakis et al. [3] apply Gaussian classifiers
and Gaussian mixture models. They present a hierarchy of
musical genres and an elaborate section on feature extraction.
Yet their classification results in only 61% accuracy over
ten genres. Salamon et al. [4] describe an approach using
high-level melodic features for their classification. Various
algorithms are compared including support vector machines,
random forests, k-nearest neighbour networks and Bayesian
networks. Recognition rates of over 90% are reported. This
approach though requires the existence of a melody in an
audio file, which is not the case for all genres.

III. IMPLEMENTATION

The main purpose of this project was to implement dif-
ferent classification algorithms and compare their perfor-
mance when applied to a practical problem. Specifically, we
performed music genre classification of songs on a dataset
containing 150 songs. The three algorithms we used for
classification were support vector machines (SVM), k-nearest
neighbor (k-NN) classification, and decision trees (DT).

In general, three steps have to be performed to apply a
classifier and evaluate the quality of the results:

1) Data collection: Retrieve a feature set for a represen-
tative sample of music.

2) Classification: Run the classification algorithm on this
dataset.

3) Validation: Confirm the validity of the results using
cross-validation.

In this section, we will describe each of the three steps in
detail, specifically data collection and the three classifiers.
All algorithms outlined in this section were implemented in
Python mostly because interfacing with the song databases
could be done most conveniently with the provided Python
APIs and the number of machine learning toolkits available
for Python.

A. Data Collection

The dataset we fed into our classification algorithms was
a combination of two datasets available online. We retrieved
a list of songs divided into 5 genres from [5] (henceforth
called the Gettysburg dataset) and retrieved relevant features
for that song selection from the Echo Nest [6] database using
the provided Python API. The Gettysburg dataset not only
provides the song names and their ground truth classification
into genres but also local feature descriptors called MFCC
(Mel Frequency Cepstral Coefficients). These are very low-
level features that describe the song segment by segment
resulting in a feature matrix of size n by m (where n is
the number of segments and m the number of features per
segment). Instead of using such a high number of features,
we instead only used global features in our classification.
Specifically, we selected ten features: time signature, energy,
liveness, tempo, speechiness, mode, key, duration, loudness,
danceability (as defined in [6]).

B. Classification

We used the Machine Learning Toolkit (Milk, see [7])
to implement our classification framework. Milk provides
basic implementations for most machine learning algorithms
including SVMs, k-NNs, and DTs. We conditioned our
dataset to fit the required input format for Milk and extended
the algorithms to perform multilabel classification.

a) Support Vector Machines: Support vector machines
are a popular tool in supervised learning if no prior knowl-
edge about the domain is available. As mentioned in [8],
three properties make SVMs attractive:

1) Maximum Margin Separation: SVMs compute the de-
cision boundary in such a way that the distance to the
closest datapoint on either side is maximized, which
helps SVMs to generalize well.

2) Kernel Trick: Generally, SVMs create linear hyper-
planes to separate data, but not always can such a linear
separator be found in the original input space. The
original data can be mapped to a higher-dimensional
space using kernel functions. In this space, data is
more likely to be linearly separable. Since the linear
separator in the high-dimensional space is nonlinear
in the original space, the hypothesis space is greatly
expanded.

3) Nonparametric Method: SVMs are nonparametric,
which gives them the flexibility to represent complex
functions. On the other hand, because most of the time
only a small fraction of the training data is retained,
they are also resistant to overfitting.

Typically, SVMs perform binary classification, where the
classifier decides between two available classes. To extend
binary SVMs to multilabel classification, one has to employ
one of two schemes: a one-vs-one paradigm with voting
(binary pairwise classification) or a one-vs-the-rest paradigm
where a binary classification is done between one class
and all the others. In this work, we employed the one-vs-
one paradigm where each binary classifiers contributed to
the final multilabel classification by voting. For the sake
of completeness, we have also tried the one-vs-the-rest
approach, but it consistently gave worse results. Addition-
ally, we employed the kernel trick to map the given 10-
dimensional feature vectors into a higher dimensional space
(as outlined in [8]) where it can be more easily separated
linearly. Specifically, we used radial basis functions of the
form β ∗ e−

||x1−x2||
σ , with β = 1. Here x1 and x2 represent

the feature vectors and σ the associated covariance.
b) k-Nearest Neighbor: k-Nearest Neighbor classifica-

tion (k-NN) works directly in the feature space spanned by
the feature vectors, in our case a 10-dimensional space. Given
a sample data point, it examines the k nearest data points and
determines a classification of the current sample using a vot-
ing mechanism. If k is selected to be 1 this algorithm simply
returns the classification of the nearest neighbor, if k > 1 a
majority vote is returned. To avoid draws in the voting, it
is recommended to use an odd integer for k. Additionally,
a distance-dependent weight is employed, weighing closer
neighbors more heavily. Although it intuitively makes sense
to pick k to be at least the number of labels used, we noticed
no significant improvement beyond k = 3.

c) Decision Trees: Multilabel decision trees basically
work the same way as binary decision trees as explained in
[8] with the main difference that at each level, labels are split
into two groups in a way that tries to balance the number of
samples on each side (as opposed to the number of labels).
A multilabel tree where the labels [1, 2, 3, 4] are distributed
with probabilities [0.5, 0.125, 0.25, 0.125] would look like
shown in Fig. 1.

C. Cross-Validation

Cross-validation refers to a commonly used technique in
machine learning where the dataset is divided into a training
set and a test set. The classifier is trained using the training

Fig. 1. Example of a multilabel tree.

TABLE I
AVERAGE ACCURACIES OF THE CLASSIFIERS

of Genres k-NN SVM DT

2 71.10 % 60.71 % 64.14 %

3 53.19 % 46.26 % 48.24 %

4 45.65 % 37.27 % 37.79 %

5 43.64 % 26.82 % 34.55 %

set and its classification accuracy determined using the test
set. This process is repeated n times and the average accuracy
is reported. We used 10-fold stratified cross-validation, where
n = 10 and the data set is split 80%/20% into training and
test data.

IV. EVALUATION

As mentioned in Section III, our dataset (see [5]) consisted
of 150 songs in 6 genres (classical, country, jazz, pop,
rock, techno). From this dataset, we only used the artist
and title information for feature extraction from the Echo
Nest database (see [6]) and genre information as our ground
truth. Since most of the classical songs were not found on [6]
and the remaining classical songs did not suffice to train the
classifiers, we dropped classical music from our genre list.
Eventually we ended up with 112 songs in 5 genres with 22
to 23 songs per genre on average.
In order to evaluate the results, we ran the k-NN, SVM and
DT classifiers with subsets of the data consisting of songs
from a combination of 2, 3, 4 and 5 genres respectively
and obtained the accuracy rate in each case. The average
rates across the combinations are shown in Table I. It turns
out that the classification rate not only depends on the
number of genres, but also on the combinations of genres
selected. We achieved accuracy rates of up to 97.5% when
Pop and Techno are chosen. Fig. 2 shows the accuracy rates
of each of the combinations of genres with the shaded bars
representing the average value. We also used Tableu, a visual
data analysis tool in order to determine which features are
more discriminant by plotting each feature against the other
and viewing the difference in their mean value for each genre
(see Fig. 4 in the appendix).

V. DISCUSSION

From Fig. 2, it can be seen that in each case of 2, 3, 4 and
5 genres, the k-NN classifier yielded the best accuracy rate,
followed by Support Vector Machine and Decision Trees.

A better understanding of why this order occurred can be
gained by examining the data distribution in space across its

Fig. 2. Accuracy rates of the classifiers. Accuracies are reported in percent
for each method broken down by the number of genres. The color indicates
the method used.

Fig. 3. Featurewise distinction of the data based on genre

10 dimensions (features). Fig. 3 plots a selection of features
against one another for each data point in our set. This is a
sample of the 5 most discriminant features from our visual
analysis (see Fig. 3).

From Fig. 3, it can be seen that the division of the
input space according to the genres is not clear and most
importantly, does not have any distinct linear boundaries. For
an SVM to be efficient, we need the classes to be linearly
separable in the kernel space (i.e. the high-dimensional space
after applying the kernel trick). Fig. 3 shows that the input
space is not linearly separable, but given the low accuracy
rates we have to assume that the kernel space does not
separate well either. This is why we believe that k-NN has
fared better in our classification problem.

For decision trees, the data constructs a complex tree
structure with many spurious relationships that affect the
accuracy rate. It would be interesting to see how well the tree
balances and whether the classification rate improves after
we perform a dimensionality reduction (i.e. feature selection
of highly discriminant features) using a technique such as
Principal Component Analysis. As we increased the number
of genres for the songs to be classified the achieved accuracy
decreases as expected. Not only do the number of genres

affect the accuracy rate but also the particular genres selected
as Fig. 2 shows. The accuracy rate for country, pop, techno is
68.46 while for jazz, pop, rock it is as low as 40.77. The five
genres used in this paper exhibit fairly similar characteristics,
which complicates reliable classification. We believe that one
of the main reasons Salamon et al. [4] have achieved such
high accuracy rates of up to 90 % is that the genres they
used for classification are as disparate as opera and pop.

This leads us to question how discriminant the individual
features are with respect to the genres. Thus, while selecting
the data for the classification problem we learned that we
need to consider two important factors:

1) Are the genres/classes significantly different from each
other?

2) Are the features discriminant enough?
While 1) might not be fully under our discretion, we can defi-
nitely improve on 2) by combining feature extraction/dimen-
sionality reduction methods such as Principle Component
Analysis (PCA) and Linear Discriminant Analysis (LDA)
and feed the output of those into our classifiers.

While all of this holds, we can try to increase the accuracy
of the classification problem by extending feature extraction
directly from the audio files and increasing the size of
our dataset. While feeding classifiers with more data would
benefit k-NN and SVM classifiers, for multi-tree classifiers
however, we expect that we end up overfitting, which will
need to be countered by an appropriate pruning technique.

In our classification, we have used only global features. It
would be interesting to see how our classification accuracies
could be improved by making use of local features (such as
commonly used MFCC features [4]) of a song such as pitch
and timbre features, vibrato features and contour topology.
Features such as these include calculating for example the
mean pitch across the segments that make up an audio piece.
The key here is to use the domain knowledge required for
such analyses. Could we, by using sheer computing power
determine which local features would be most appropriate?
That is a question worth exploring.

REFERENCES

[1] M. Talupur, S. Nath, and H. Yan, “Classification of music genre,”
2001. [Online]. Available: http://www.cs.cmu.edu/∼yh/files/GCfA.pdf

[2] A. Galkin, P. Rege, and R. Pocratsky, “24787 artifical intelligence
and machine learning for engineering design - classficiation of music
using neural networks,” 2011. [Online]. Available: agalkin.com/media/
music/proj music report.pdf

[3] G. Tzanetakis and P. R. Cook, “Musical genre classification of audio
signals,” IEEE Transactions on Speech and Audio Processing, vol. 10,
no. 5, pp. 293–302, 2002.

[4] J. Salamon, B. Rocha, and E. Gómez, “Musical genre classification
using melody features extracted from polyphonic music signals,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Kyoto, Japan, 25/03/2012 2012. [Online].
Available: files/publications/SalamonRochaGomezICASSP2012.pdf

[5] D. Turnbull. (2012, July) Music genre classification. [Online].
Available: http://modelai.gettysburg.edu/2012/music/

[6] T. Jehan and B. Whitman. (2012) The echo nest. [Online]. Available:
http://the.echonest.com/

[7] L. P. Coelho. (2008 - 2012) Milk: Machine learning toolkit. [Online].
Available: http://packages.python.org/milk/

[8] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2010.

APPENDIX

Fig. 4. The full 10 by 10 feature matrix. Shown are the average values for each feature in each genres.

