Complete Heterogeneous Self-Reconfiguration:
Deadlock Avoidance Using Hole-Free Assemblies

Introduction

What is heterogeneous self-reconfiguration?

» A self-reconfigurable robot is comprised of individual modules.

» Modules have different properties (e.g. shape, size) and/or different
capabilities.

» Goal: Reconfigure an initial configuration C; into a target configuration C7.

Motivation for heterogeneous self-reconfiguration.
» These systems can adapt to tasks by changing their morphology.

» Such systems can be easily extended and repaired by adding new modules.

System Representation

» Modules are represented by unit cubes.

> Dimension 6 = 1
~ Origin x; € 2° | comer
> Properties p; € P

» Cubes are embedded in a discrete
three-dimensional unit lattice.

Assumptions and Constraints

Constraints:
» The initial overlap of Cz and » Connectivity constraint: The configuration

Assumptions:
Ct is exactly one cube. has to remain connected at all times.
» The initial and final
configurations are hole and
enclosure-free.

» Permanence constraint: Once a cube
reaches its target it remains fixed to that
position.

Planning Approach

Self-reconfiguration requires to move every cube ¢; € C; \ Ct to a matching
position in the target configuration Cr.

At each iteration, do the following:
» Determine the movable set M, i.e. which cubes can currently be moved.

» Determine the reachable set R, i.e. which target positions can currently be
reached.

» Assign a movable cube ¢; € M to a target position r; € ‘R or execute
assignment resolution.

» Determine the planning space N through which a path can be planned.
» Plan a path p; from ¢; to r; through N and execute p;.

Reachable set
R=NnNCr

Movable set
M=C\(AUIlUCT)}

Overlapping set
O=CnNCt

U

Assignment Resolution / Deadlock Avoidance

Planning a path requires a valid assignment of a cube ¢; € M to a position

r; € R with matching properties. The absence of valid assignment creates

deadlocks that we resolve using assignment resolution.

» A valid assignment is a pair a; = {c;, r;} with ¢, € M and r; € R\ H;
such that p(c;) = pr(ri), Vpx € P (with P being the set of properties and
H, the set of positions that would create holes).

» Assignment resolution moves a movable cube to a random position
m; = rand(N(C) \ R) if no cube ¢; € M matches all properties py of any
position r; € R,

t = 2At t = 3At

e

» Fact: Assignment resolution will enable the computation of a valid
assignment with probability 1.

» Fact: Using assignment resolution, the reconfiguration algorithm
guarantees a successful reconfiguration in the absence of holes.

Hole Detection

» A hole H is an unreachable empty target position or a set thereof.

» The boundary of a hole OH separates H from the rest of the planning space
N(C).

» A hole exists if N(C) contains two or more connected components.

» Hole detection is based on Graph Laplacian of N(C), by which the number
of connected components is computed.

» Fact: The hole detection algorithm detects a hole iff there exists a hole.

Algorithm 1 Hole Detection

Require: input a = {c;, r;}, C
1. Compute N(C)
2. Compute G¢ of N(C)
3: Compute L of G¢
4:if\A;::O\:>].then
5: Return true
6: else
7: Remove r; from N (C)
8: Update ¢;'s origin to r; (in C)
0; Recompute N (C), G, and L
10. if |\, = 0] > 1 then

11: Return true
12: else

13: Return false
14: end if

15: end if

Simulation Results

Size Steps Detected Holes # of Resolutions
10 33 0 3

20 | 69 0 1

30 107 0 0

40 = 150 0 0

50 = 233 0 1

-u‘“gi‘

¢

