
Complete Heterogeneous Self-Reconfiguration:
Deadlock Avoidance Using Hole-Free Assemblies

Daniel Pickem, Magnus Egerstedt, and Jeff S. Shamma

DCL Lab, Georgia Institute of Technology, Atlanta, USA

Introduction

What is heterogeneous self-reconfiguration?
I A self-reconfigurable robot is comprised of individual modules.
I Modules have different properties (e.g. shape, size) and/or different

capabilities.
I Goal: Reconfigure an initial configuration CI into a target configuration CT .

Motivation for heterogeneous self-reconfiguration.
I These systems can adapt to tasks by changing their morphology.
I Such systems can be easily extended and repaired by adding new modules.

System Representation

I Modules are represented by unit cubes.
. Dimension δ = 1
. Origin xi ∈ Z3

. Properties pi ∈ P
I Cubes are embedded in a discrete

three-dimensional unit lattice.

Assumptions and Constraints

Assumptions:
I The initial overlap of CI and

CT is exactly one cube.
I The initial and final

configurations are hole and
enclosure-free.

Constraints:
I Connectivity constraint: The configuration

has to remain connected at all times.
I Permanence constraint: Once a cube

reaches its target it remains fixed to that
position.

Planning Approach

Self-reconfiguration requires to move every cube ci ∈ CI \ CT to a matching
position in the target configuration CT .

At each iteration, do the following:
I Determine the movable set M, i.e. which cubes can currently be moved.
I Determine the reachable set R, i.e. which target positions can currently be

reached.
I Assign a movable cube ci ∈ M to a target position ri ∈ R or execute

assignment resolution.
I Determine the planning space N through which a path can be planned.
I Plan a path pi from ci to ri through N and execute pi .

Overlapping set
O = C ∩ CT

Movable set
M = C \ (A∪ I ∪ CT)}

Reachable set
R = N ∩ CT

Assignment Resolution / Deadlock Avoidance

Planning a path requires a valid assignment of a cube ci ∈ M to a position
ri ∈ R with matching properties. The absence of valid assignment creates
deadlocks that we resolve using assignment resolution.

I A valid assignment is a pair ai = {ci , ri} with ci ∈ M and ri ∈ R \ Ht

such that pk(ci) = pk(ri), ∀pk ∈ P (with P being the set of properties and
Ht the set of positions that would create holes).

I Assignment resolution moves a movable cube to a random position
mi = rand(N (C) \ R) if no cube ci ∈ M matches all properties pk of any
position ri ∈ R ,

I Fact: Assignment resolution will enable the computation of a valid
assignment with probability 1.

I Fact: Using assignment resolution, the reconfiguration algorithm
guarantees a successful reconfiguration in the absence of holes.

Hole Detection

I A hole H is an unreachable empty target position or a set thereof.
I The boundary of a hole ∂H separates H from the rest of the planning space

N(C).
I A hole exists if N(C) contains two or more connected components.
I Hole detection is based on Graph Laplacian of N(C), by which the number

of connected components is computed.
I Fact: The hole detection algorithm detects a hole iff there exists a hole.

Algorithm 1 Hole Detection

Require: input a = {ci , ri}, C
1: Compute N (C)
2: Compute GC of N (C)
3: Compute L of GC

4: if |λi = 0| > 1 then
5: Return true
6: else
7: Remove ri from N (C)
8: Update ci ’s origin to ri (in C)
9: Recompute N (C), GC , and L

10: if |λi = 0| > 1 then
11: Return true
12: else
13: Return false
14: end if
15: end if

H

∂ H

Simulation Results

Size Steps Detected Holes # of Resolutions
10 33 0 3
20 69 0 1
30 107 0 0
40 150 0 0
50 233 0 1

http://www-i6.informatik.rwth-aachen.de <surname>@cs.rwth-aachen.de

