Complete Heterogeneous Self-Reconfiguration: Deadlock Avoidance Using Hole-Free Assemblies

Decision and Control Laboratory

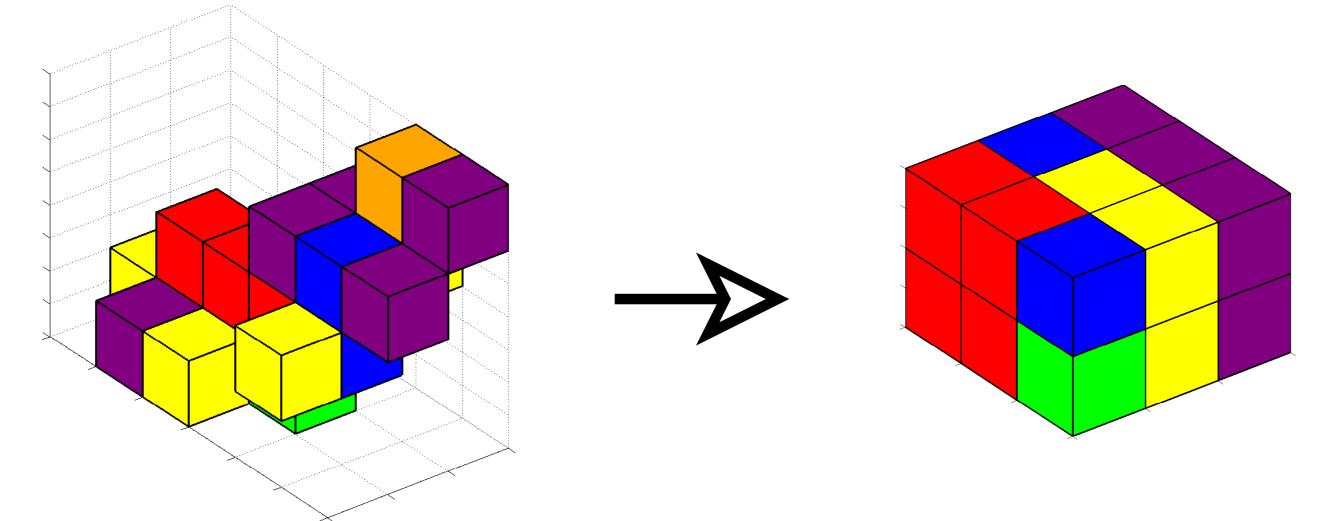
DCL Lab, Georgia Institute of Technology, Atlanta, USA

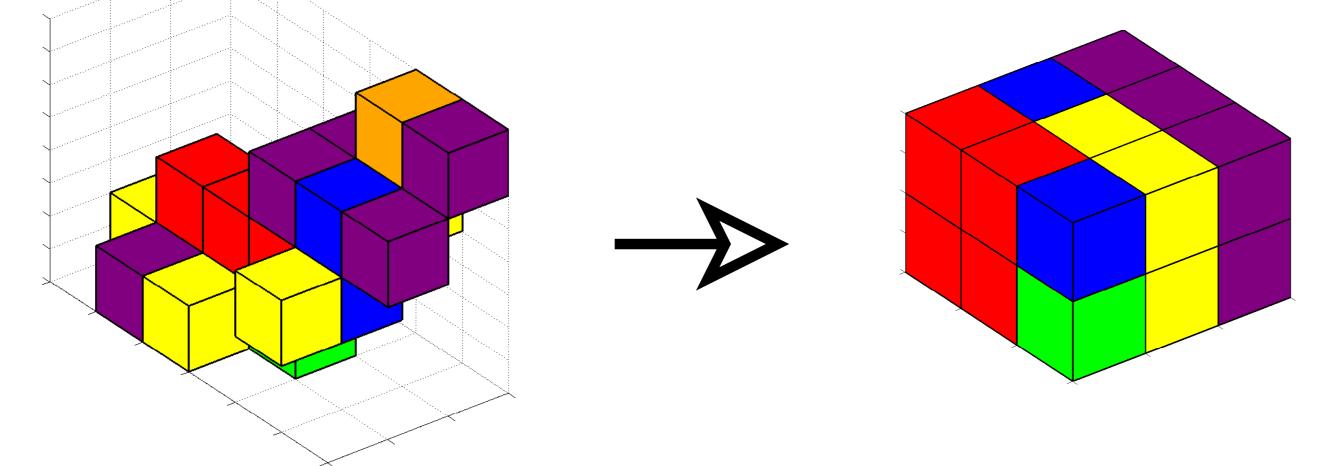
Daniel Pickem, Magnus Egerstedt, and Jeff S. Shamma

Introduction

What is heterogeneous self-reconfiguration?

- ► A self-reconfigurable robot is comprised of individual modules.
- ► Modules have different properties (e.g. shape, size) and/or different capabilities.
- ► Goal: Reconfigure an initial configuration C_I into a target configuration C_T .





Assignment Resolution / Deadlock Avoidance

Planning a path requires a valid assignment of a cube $c_i \in \mathcal{M}$ to a position $r_i \in \mathcal{R}$ with matching properties. The absence of valid assignment creates deadlocks that we resolve using assignment resolution.

- ► A valid assignment is a pair $a_i = \{c_i, r_i\}$ with $c_i \in M$ and $r_i \in R \setminus H_t$ such that $p_k(c_i) = p_k(r_i), \forall p_k \in P$ (with P being the set of properties and H_t the set of positions that would create holes).
- **Assignment resolution** moves a movable cube to a random position $m_i = \operatorname{rand}(\mathcal{N}(\mathcal{C}) \setminus R)$ if no cube $c_i \in M$ matches all properties p_k of any position $r_i \in R$,

t = 0

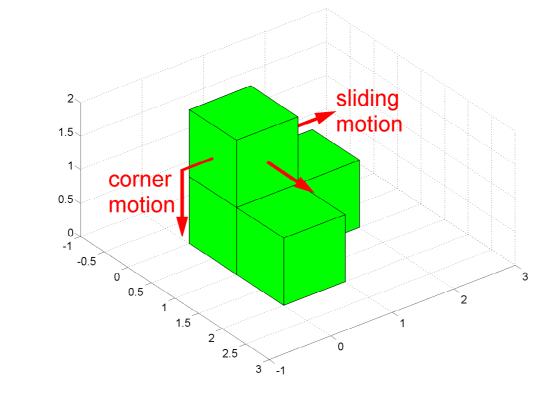
Motivation for heterogeneous self-reconfiguration.

- These systems can adapt to tasks by changing their morphology.
- Such systems can be easily extended and repaired by adding new modules.

System Representation

Modules are represented by unit cubes.

- \triangleright Dimension $\delta = 1$
- ▷ Origin $x_i \in \mathbb{Z}^3$
- \triangleright Properties $p_i \in P$
- Cubes are embedded in a discrete three-dimensional unit lattice.



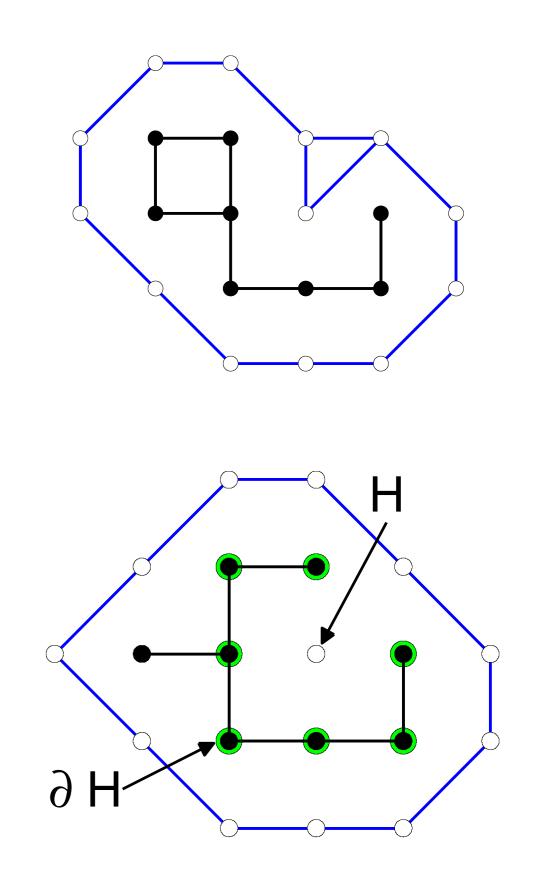
- **Fact:** Assignment resolution will enable the computation of a valid assignment with probability 1.
- **Fact:** Using assignment resolution, the reconfiguration algorithm guarantees a successful reconfiguration in the absence of holes.

Hole Detection

- ► A hole H is an unreachable empty target position or a set thereof.
- The boundary of a hole ∂H separates H from the rest of the planning space $N(\mathcal{C})$.
- \blacktriangleright A hole exists if $N(\mathcal{C})$ contains two or more connected components.
- ► Hole detection is based on Graph Laplacian of $N(\mathcal{C})$, by which the number of connected components is computed.
- **Fact:** The hole detection algorithm detects a hole iff there exists a hole.

Algorithm 1 Hole Detection

Require: input $a = \{c_i, r_i\}, C$ 1: Compute $\mathcal{N}(\mathcal{C})$ 2: Compute G_C of $\mathcal{N}(\mathcal{C})$



Assumptions and Constraints

Assumptions:

- \blacktriangleright The initial overlap of $C_{\mathcal{I}}$ and $C_{\mathcal{T}}$ is exactly one cube.
- ► The initial and final configurations are hole and enclosure-free.

Constraints:

- Connectivity constraint: The configuration has to remain connected at all times.
- ► Permanence constraint: Once a cube reaches its target it remains fixed to that position.

Planning Approach

Self-reconfiguration requires to move every cube $c_i \in C_I \setminus C_T$ to a matching position in the target configuration C_T .

At each iteration, do the following:

- \blacktriangleright Determine the movable set \mathcal{M} , i.e. which cubes can currently be moved.
- \blacktriangleright Determine the reachable set \mathcal{R} , i.e. which target positions can currently be reached.
- ▶ Assign a movable cube $c_i \in \mathcal{M}$ to a target position $r_i \in \mathcal{R}$ or execute assignment resolution.
- \blacktriangleright Determine the planning space \mathcal{N} through which a path can be planned.

- 3: Compute *L* of G_C
- 4: if $|\lambda_i = 0| > 1$ then
- Return true 5:

6: **else**

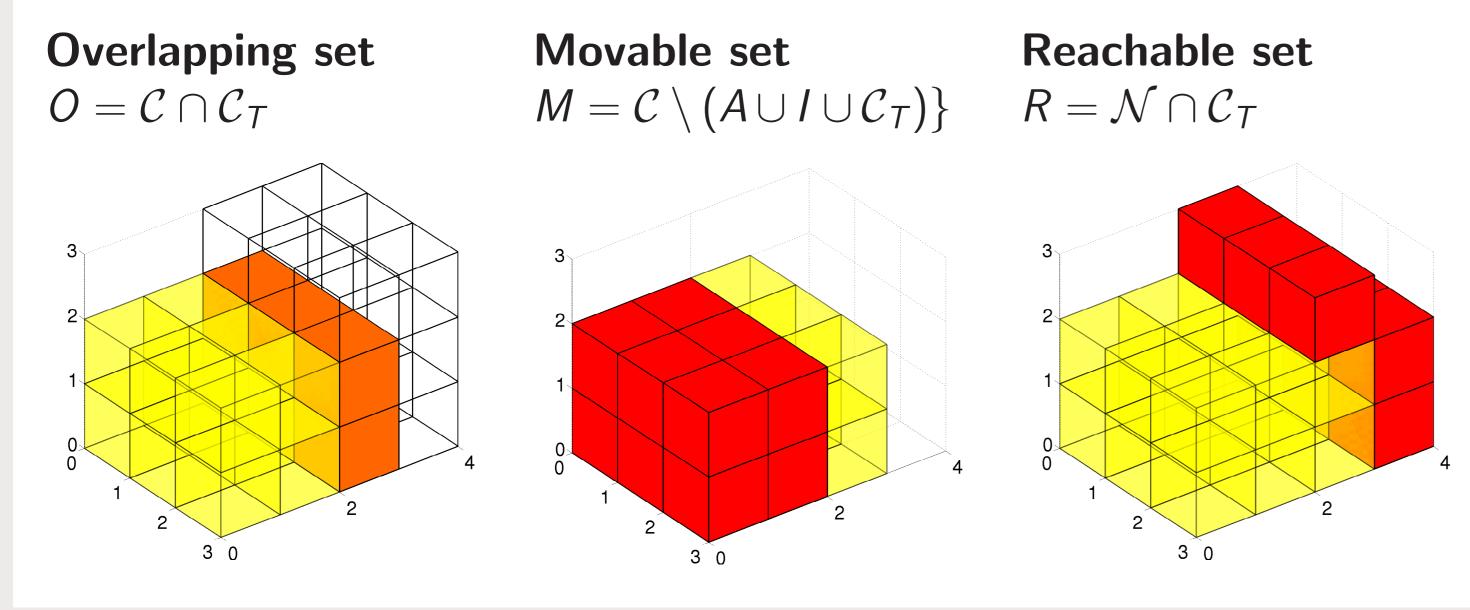
- Remove r_i from $\mathcal{N}(\mathcal{C})$ 7:
- Update c_i 's origin to r_i (in C) 8:
- Recompute $\mathcal{N}(\mathcal{C})$, $G_{\mathcal{C}}$, and L9:
- if $|\lambda_i = 0| > 1$ then 10:
- Return true 11:
- else 12:
- Return false 13:
- end if 14:

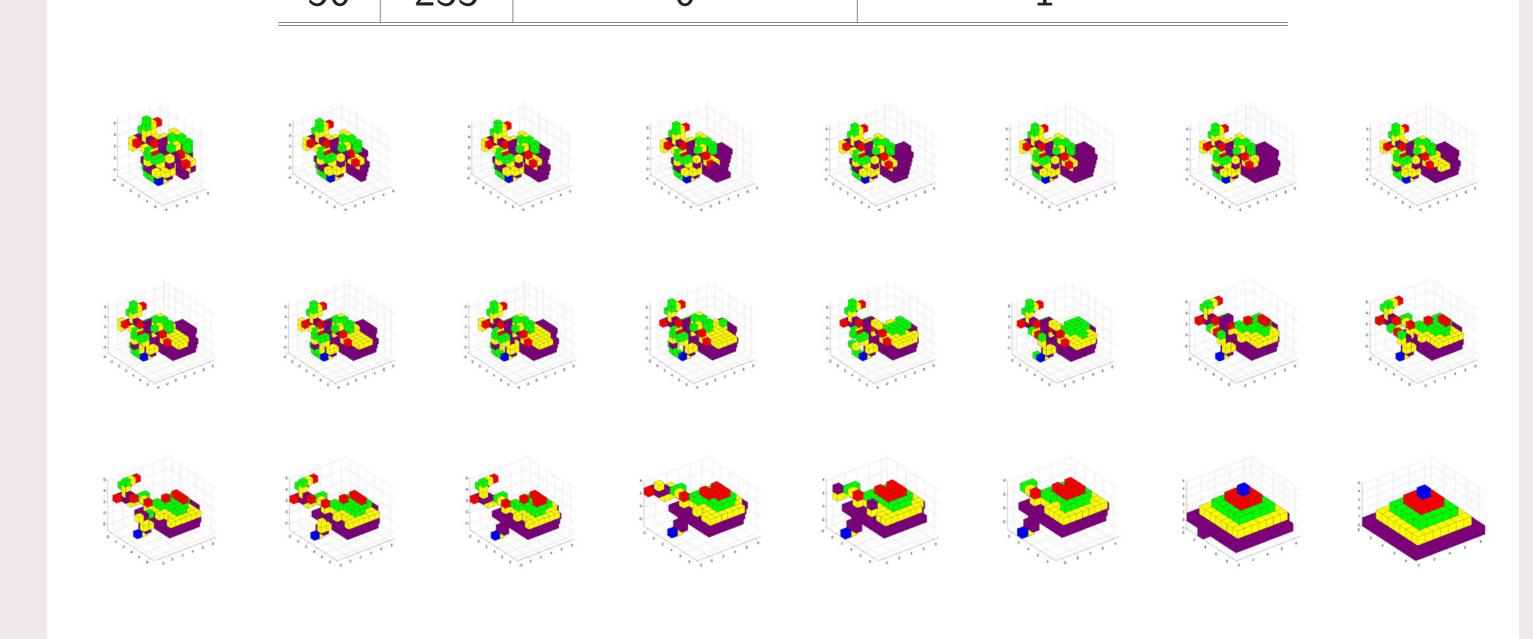
15: **end if**

Simulation Results

Size	Steps	Detected Holes	# of Resolutions
10	33	0	3
20	69	0	1
30	107	0	0
40	150	0	0
50	233	0	1

▶ Plan a path p_i from c_i to r_i through \mathcal{N} and execute p_i .





http://www-i6.informatik.rwth-aachen.de

