DANIEL PICKEM

7313 Renaissance Way Atlanta, GA 30308 United States +(1) 678-467-4219 daniel.pickem@gmail.com www.danielpickem.com

EDUCATION

Ph.D., Robotics Expected May 2016

Research Topic: Self-reconfiguration of modular robots in 3D

Adviser: Jeff Shamma, Magnus Egerstedt

Georgia Institute of Technology, Atlanta, Georgia (visit to KAUST, Thuwal, Saudi Arabia)

M.S., Electrical and Computer Engineering - Systems and Control

Major: Electrical and Computer Engineering, Minor: Mechanical Engineering Thesis: 3D reconfiguration using graph grammars for modular robotics

Adviser: Magnus Egerstedt

Georgia Institute of Technology, Atlanta, Georgia

B.S., Electrical Engineering and Computer Science

Vienna University of Technology, Vienna, Austria

Juni 2010

Dec. 2011

PROFESSIONAL EXPERIENCE

R&D Intern, Qualcomm, San Diego

May 2013 - July 2013

- Intern at the Office of the Chief Scientist, Qualcomm's main research division
- Implemented behavior-based autonomy architecture for Turtlebot in ROS (Robot Operating System)
- Implemented nonholonomic, nonlinear controller for a differential drive robot
- · Demonstrated feasibility of architecture for telepresence purposes

Robotics Research Assistant, ASDL, Georgia Institute of Technology, Atlanta

Jan. 2012 - June 2012

- Lead software and controls engineer for an autonomous aquatic vehicle to participate in the 5th Annual International RoboBoat Competition hosted by AUVSI
- Implemented behavior-based control architecture to enable vehicle to autonomously operate
- Implemented stereo vision and calibration algorithms for generic USB cameras
- Generated 3D representation of data collected by tilting LIDAR and stereo cameras

Intern, BMW Group, Research and Development Division, Munich, Germany

June 2011 - Aug. 2011

- Implemented an arc spline method to approximate trajectory data and calculate curve radii for later use in adaptive cruise control
- Implemented various metrics to evaluate the quality of the approximation
- Adapted the GraphSLAM optimization framework g2o to estimate the likeliest trajectory given odometry and GPS data.

Research Assistant, Carnegie Mellon University, Pittsburgh, Pennsylvania

July 2009 - Sept. 2009

- Extended the Spiral program generation framework (www.spiral.net) by implementing the Stockham variant of the fast Fourier transform
- Generated code for the fast Fourier transform for highly parallel graphics processing units (GPUs) using Nvidia's CUDA programming language
- Directly rehired due to the speedup achieved during the last internship

Research Assistant, Carnegie Mellon University, Pittsburgh, Pennsylvania

Aug. 2008 - Dec. 2008

- Integrated various embedded systems into the Spiral program generation framework (www.spiral.net)
- Simulated floating-point arithmetic on integer processors and increased performance by a factor of 1.5 to 7.5 compared to emulated floating-point computation of existing libraries
- Selected out of a pool of applicants in a highly competitive internship program

LEADERSHIP EXPERIENCE

Georgia Tech RoboGrads Vice President for Robotics at Georgia Tech	April 2014 – April 2015
Georgia Tech RoboGrads Vice President for Communications at Georgia Tech	April 2013 – April 2014
Georgia Tech Marine Robotics Group at Georgia Tech	Sept. 2011 – June 2012
Rock Climbing Instructor at Outdoor Recreation at Georgia Tech (ORGT)	Sept. 2010 - May 2012
Board Member for Exchange at the International Association for the Exchange of Students for Technical Experience (IAESTE), Vienna, Austria	Sept. 2009 – Aug. 2010
Treasurer of the Youth Club, Purbach, Austria	Sept. 2008 – Aug. 2010

Publications

- D. Pickem, M. Egerstedt, and J. S. Shamma, "A Game-theoretic Formulation of the Homogeneous Self-Reconfiguration Problem", Conference on Decision and Control (CDC) 2015 (submitted)
- D. Pickem and M. Egerstedt, "The GRITSBot in its Natural Habitat A Multi-Robot Testbed", IEEE Conference on Robotics and Automation 2015 (ICRA)
- D. Pickem, M. Egerstedt, and J. S. Shamma, "Complete Heterogeneous Self-reconfiguration: Deadlock Avoidance Using Hole-free Assemblies", 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems 2013
- D. Pickem and M. Egerstedt, "Self-reconfiguration Using Graph Grammars for Modular Robotics", 4th IFAC Conference on Analysis and Design of Hybrid Systems 2012

Honors and Awards

•	Fulbright Student Grant, Austrian-American Educational Commission	2010 - 2012
•	Science Summer Research Scholarship. Vienna University of Technology	2009

Science Summer Research Scholarship, Vienna University of Technology

Skills

Programming	 C/C++, Python, Java, Matlab scripting, Linux bash scripting
Simulations	Robotic Operating System (ROS), Gazebo, Player/Stage, Matlab, Simulink
Operating Systems	 Windows 2000/XP/7, Linux (Ubuntu, Fedora, Debian), embedded Linux
Software	Eclipse, Microsoft Visual Studio, Microsoft Office, Open Office, Latex
Systems and Control	 Stability, controllability, and observability analysis, eigenvalue placement Observer design, Kalman filter design, PID controller design Networked and multi-agent control systems Optimal control of linear systems
Robotics	 Path planning with A*, RRT*, and RRT Connect, self-reconfiguration planning Computer vision (blob detection, object recognition, stereoscopic vision) Machine learning basics, behavior-based robotic systems Kinematics and inverse kinematics of robotic manipulators Static, dynamic, velocity, and stiffness analysis of robotic manipulators
Modeling	 Solidworks 3D model design basics, Eagle circuit board design
Prototyping	 Arduino, Raspberry Pi, and Beaglebone-based prototyping, actuator control and data collection using microcontrollers Atmega-based circuit board design Epilog Lasercutter, basic 3D printing, circuit milling, SMD soldering