
Self-Reconfiguration Using Graph
Grammars for Modular Robotics

Daniel Pickem ∗ Magnus Egerstedt ∗∗

∗Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
daniel.pickem@gatech.edu).

∗∗Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
magnus.egerstedt@gatech.edu)

Abstract: In this paper, we apply graph grammars to self-reconfigurable modular robots
and present a method to reconfigure arbitrary initial configurations into prespecified target
configurations thus connecting the motions of modules to formal assembly rules. We present an
approach for centralized reconfiguration planning and decentralized, rule-based reconfiguration
execution for three-dimensional modular structures. The reconfiguration is done in two stages.
In the first stage, paths are planned for each module and then rewritten into production rules
as defined for graph grammars. Global knowledge about the configuration is available to the
planner. In stage two, these rules are applied in a decentralized fashion by each node individually
and with local knowledge only. We show that our approach yields a unique reconfiguration
sequence and a graph grammar that results in the target configuration being the only reachable
stable configuration.

1. INTRODUCTION

Modular robotics is the assembly of simple individual
modules into a larger, functional robot. The benefit of
constructing such modular robots out of smaller building
blocks is that they can be rearranged into different config-
urations that can perform different functions and have dif-
ferent capabilities. In fact, the key advantages of modular
robots are their potential for versatility, robustness, and
low cost. The ability to reconfigure allows modular robots
to adapt to new tasks and environments by changing their
morphology. Broken modules can be replaced by functional
ones or new modules can be added without changing the
general functionality of the structure (see for example Yim
et al. [2007]).
The goal of this work is to present a novel approach for the
automatic reconfiguration of three-dimensional modular
robots from an arbitrary initial configuration into a desired
target configuration. This process is completed in two
stages; the planning and the execution stage. In stage one,
paths are planned for every module from its initial position
to its target position. This planning is done in a centralized
fashion with global knowledge. The resulting paths are
then rewritten into a ruleset composed of production rules.
This paper follows the general route laid down in Jones and
Mataric [2003], where rules are automatically generated for
two-dimensional structures. Three-dimensional structures
were addressed in Brandt and Ostergaard [2004], albeit
only for a much smaller class of systems compared to what
is done in this paper.
For the algorithm presented in this paper, the initial con-
figuration has to be known (as is also the case for Jones
and Mataric [2003] and Brandt and Ostergaard [2004]).
The dependence on initial configurations has been treated
in Fitch et al. [2003] for manually defined rulesets. Other
work on manually defined rulesets includes Butler et al.

[2004] who have demonstrated the feasibility and scalabil-
ity of rule-based self-reconfiguration. The rulesets in these
papers do not contain graph grammatical production rules.
Klavins [2007], on the other hand, manually synthesizes
graph grammars for two-dimensional reconfiguration and
we will follow the approach for three-dimensional struc-
tures in this paper.
The main contribution of this paper is the automatic
generation of graph grammars for the self-reconfiguration
of three-dimensional structures. Any arbitrary initially
connected configuration composed of cubic modules can
be reconfigured into any prespecified target configuration.
The only constraints of our method are that both con-
figurations are not allowed to contain any enclosures and
have to feature an overlapping region that contains at least
one module. Our approach yields a unique reconfiguration
sequence and we prove that the target configuration is the
only possible outcome of the reconfiguration sequence.
The rest of this paper is organized as follows: Section
2 presents previously done work in the field of self-
reconfiguration. Section 3 describes our system represen-
tation and introduces the notation used in this paper.
Section 4 explains the path planning approach used for
the reconfiguration. Section 5 introduces graph grammar
concepts and their application to self-reconfiguration and
presents the main contribution of this paper. Section 6
presents our findings and Section 7 concludes this paper.

2. RELATED WORK

Much work has been done on the planning aspect of
self-reconfiguration. Available planning strategies include
hierarchical or layered planning, rule-based planning, and
Markov decision process-based planning. This section
specifically presents relevant rule-based reconfiguration
approaches. Butler et al. [2004] describe a rule-based

system inspired by cellular automata. Their rulesets are
designed manually and enable groups of modules to split
and merge, climb over or move around obstacles, or move
through tunnels. Brandt and Ostergaard [2004] introduce
a rule-based control strategy for the ATRON system (see
Brandt et al. [2007]). Their rules take connectivity in-
formation into account and are automatically generated.
They introduce wild card rules to reduce the size of the
ruleset. Jones and Mataric [2003] show rule-based control
for two-dimensional structures. The rules are automati-
cally generated and only use connectivity information to
check for rule applicability. These rules are either manually
synthesized, limited to a specific class of structures or do
not guarantee a successful reconfiguration to the target
structure.
Many other approaches have been presented in the liter-
ature. One example is the approach shown in Fitch and
Butler [2007] who formulate the reconfiguration problem
as a Markov decision process. According to the paper,
a solution is obtained in sublinear time, albeit only for
the purpose of locomotion of three-dimensional structures.
Their algorithms can handle configurations containing up
to 753 modules and map actions to lattice positions instead
of to modules. Because an optimal action is associated
with each lattice position, the same action is applied to
each module at a certain position, which only works for
homogeneous systems. Unlike Fitch and Butler [2007],
our approach can handle arbitrary reconfigurations and
includes locomotion as a special case.
Graph grammars, as a tool for manipulating graphs, have
also been applied to modular robotics. Klavins [2007],
for example, uses graph grammars to reconfigure pro-
grammable parts, a triangle shaped hardware implementa-
tion. He manually synthesizes rulesets that are designed to
form specific structures out of the triangular modules. As
opposed to our system, Klavins [2007] allows multiple rules
to be applicable to the whole system at the same time.
Unlike for our system, this approach does not guarantee
a uniquely determined reconfiguration sequence or the
reaching of the target configuration.

3. SYSTEM REPRESENTATION

In this paper we investigate a modular robotic system
whose basic building blocks are visually represented by
cubes (see Fig. 1). Moreover, no physical constraints be-
yond collision-avoidance such as gravity, module masses,
or forces are taken into account. Additionally, the entire
reconfiguration process happens in free space and is not
restrained by walls, floors, or any other obstacles. These
assumptions are made in order to focus the contribu-
tion on the self-reconfiguration process rather than on
implementation-specific details.
Following the taxonomy in Yim et al. [2007], modular
robots can generally be categorized into lattice-type and
chain-type architectures. We present a lattice-based sys-
tem that is embedded in a discrete coordinate system using
the sliding cube model (see Fitch et al. [2003]). In the
sliding cube model, every module (also referred to as node)
is represented as a cube with dimension δ (w.l.o.g. we use
unit cubes, i.e. δ = 1), an origin xi ∈ Z3, and a globally
unique integer identifier. A cube features connectors on
each surface and is capable of executing motions. A motion

can be generally described as a function f(xi,m) = xi +m
where xi ∈ Z3 and m ∈ Z3. Therefore, a motion moves a
cube to a new position in Z3. In particular, the cubes in our
system are capable of two primitive motions - sliding along
a surface made of other cubes as well as convex transitions
to orthogonal surfaces.

Definition 1. A sliding motion ms is such that f(xi,ms) =
xi + ms where xi ∈ Z3 and ms ∈ Z3 ∧ms ∈ Ms. Ms is
the set of all possible sliding motions and is defined as
Ms = {m ∈ Z3|mx = 1 ∨my = 1 ∨mz = 1 ∧mx + my +
mz = 1}.

An example of a sliding motion would be f(xi,ms) :

(xi,x, xi,y, xi,z)
ms−−→ (xi,x + 1, xi,y, xi,z), which moves a

cube located at xi in the positive direction on the x-axis.

Definition 2. A convex motion mc is such that f(xi,mc) =
xi + mc where xi ∈ Z3 and mc ∈ Z3 ∧mc ∈ Mc. Mc is
the set of all possible convex motions and is defined as
Mc = {m ∈ Z3|mx < 2 ∧my < 2 ∧mz < 2 ∧mx + my +
mz = 2}.

An example of a convex motion would be f(xi,mc) :

(xi,x, xi,y, xi,z)
mc−−→ (xi,x + 1, xi,y + 1, xi,z), which moves a

cube located at xi in the positive direction on the x-axis
and the y-axis at the same time.
Note, however, that we will not allow the application of
sliding or convex motions unless they are feasible. In fact,
the movement of individual cubes requires a connected
substrate of other cubes. Such a connected arrangement is
referred to as a configuration, i.e. a configuration describes
a geometric arrangement of cubes. The representable space
of our system is Z3N and any configuration C is a subset
of the representable space, C ⊂ Z3N .
One way in which a configuration can be described is
through three adjacency matrices and a labelset. Every
adjacency matrix describes the adjacency of cubes along
one dimension. Its entries are given by g(C) = (Ak, l),
where

Ak = [ai,j,k] =

 1 if (xi − xj)T · bk = 1
−1 if (xi − xj)T · bk = −1
0 otherwise

l(i) = l(ci), ci ∈ C, i, j ∈ {1, . . . , N}
Here, k represents one dimension of the configuration
space Z3N spanned by the three orthogonal base vectors
bk, ci stands for a cube of the configuration C, and
the labels l(i) of node i are the same as the labels of
cube ci. One adjacency matrix for every dimension of
the configuration space is required to encode the three-
dimensional geometry of the configuration. The advantage
of our adjacency representation is that we can encode
the vertex set as well as the edge set of the represented
graph in one data structure. Just the labels of each
vertex have to be stored separately. An example of the
adjacency representation is shown in Fig. 2(a) and Fig.
3. Alternatively, a configuration can be represented as a
labeled graph:

Definition 3. The represented graph G = (V,E, lG) is
composed of the vertex set V , the edge set E, and edge
and vertex label set lG and is derived from (Ak, l) via the
adjacency-to-graph mapping h(Ak, l) = (V,E, lG). V is
a finite set of integers corresponding to the cube IDs, i.e.
V = {1, . . . , N}, whereN is the total number of cubes. E is

(a) Initial configuration
(transparent), target configuration
(wireframe), and overlapping nodes
(opaque)

(b) Movable nodes (opaque) as part
of the initial configuration (transpar-
ent)

(c) Immediate target successor po-
sitions (opaque) as neighboring po-
sitions of the initial configuration
(transparent)

Fig. 1. Graphical representation of the overlapping, movable, and immediate target successor set in the simulator

derived from the three adjacency matrices Ak as E ⊆ V ×
V , with ei,j ∈ E if Ai,j,k 6= 0 for some k ∈ {1, 2, 3}. lG
contains edge labels and vertex labels and is derived from
Ak and l as follows:

lG(vi) = l(ci) with vi ∈ V, ci ∈ C
lG(ei,j) = sign(Ai,j,k)bk with ei,j ∈ E and Ai,j,k 6= 0

Here, i, j ∈ {1, . . . , N}, l(ci) ∈ l, and bk is a base vector.
The vertex labels of vi ∈ G are the same as the labels for
the cubes ci ∈ C. A graphical representation of a graph G
is shown in Fig. 2(b). G is a directed, labeled graph that
preserves the three-dimensional structural information of
the configuration.

The graph notation is required to define graph grammar
rules and apply them to our system in Section 5.2. An
advantage of the graph notation is that we can apply graph
theoretical concepts such as the notion of connectivity. A
reduced version of the represented graph G, the connec-
tivity graph, is sufficient for the connectivity check.

Definition 4. The connectivity graph Gc = (V,E, lGc),
where V and E are as before and the labels lGc are defined
as follows: l(vi) = l(ci) for vi ∈ V and ci ∈ C, i.e. the labels
of nodes vi ∈ Gc are the same as the labels of cubes ci ∈ C.
The connectivity graph does not contain any edge labels
and stores connectivity information in only one adjacency
matrix A, which is defined as

Ai,j = |sign(

3∑
k=1

|Ai,j,k|)| i, j ∈ {1, . . . , N}

In this paper, we assume that the initial configuration CI
and the target configuration CT are known and contain the
same number of modules. We employ a two-stage planning
process. In stage one, our algorithm finds the overlapping
region O of both CI and CT and then calculates a path
for every node ci ∈ CI \ O to a position cj ∈ CT (see
Section 4). Furthermore, a ruleset or graph grammar is
generated from these paths. In stage two, each node then
executes rules that can be checked locally for applicability.
Local in this context means that each rule describes a
neighborhood of the current cube and can only manipulate
cubes in that neighborhood. The rule execution is done in

a decentralized way during which each cube can just access
neighborhood information and the ruleset (see Section 5).

4. PATH PLANNING

The reconfiguration process requires us to move cubes
from their initial positions to their target positions. There-
fore, we have to calculate paths for cubes ci ∈ CI to their
desired positions in cj ∈ CT . Cubes ci in the initially
overlapping region Oinit = CI ∩ CT (see Fig. 1(a)), do
not have to be moved and are excluded from the planning
process. The planning stage is composed of multiple steps,
which are the calculation of the currently overlapping re-
gion O = C∩CT , the movable setM, the immediate target
successor set R, the node path calculation (for every cube
ci ∈ CI \ Oinit), and the ruleset generation (see Section
5.2). In this section, we will formally defineM and R, the
notion of articulation points and paths, and describe the
planning approach.

Definition 5. An articulation point v in a graph G is
a node whose removal would increase the number of
connected components c(G), i.e. c(G − v) > c(G) 1 . In
other words, the removal of v would disconnect the graph
(see Fig. 2(c)).

A connected graph G has only one connected component,
c(G) = 1. Our self-reconfigurable system has to remain
connected at all times to guarantee a successful reconfig-
uration. In order to enforce this requirement, we have to
ensure that a node that is an articulation point of the
connectivity graph is never moved. The movable set is
therefore defined as follows:

Definition 6. The movable set M is a set of cubes that
can be moved without disconnecting the configuration and
is defined as M = {ci ∈ C|ci ∈ CI \ O ∧ ci /∈ A(C) ∧
|N1(ci, C)| ≤ 5}. N1(ci, C) is the one-hop neighborhood
and defined as N1(ci, C) = {cj ∈ C|dist(ci, cj) = 1}. A(C)
is the set of articulation points of the graph representing
the current configuration C (see Fig. 2(c)).

This definition is based on the sliding cube model (see
Fitch et al. [2003]) and only allows modules on the surface

1 Connected components of a graph G are its maximal connected
subgraphs.

(a) Representation of the adja-
cency matrices shown in Fig. 3

1

2 3 4

−b
1

+b
2
−b

2

+b
1 −b

3

+b
3

(b) Graph G = (V,E, lG) represented by
the adjacency matrices in Fig. 3

1

2 3 4

(c) Connectivity graph of
the configuration in Fig.
2(a) with articulation points
(highlighted)

Fig. 2. Graphical representation of the adjacency matrices in Fig. 3 and the corresponding graph.

A1 =

 0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

A2 =

 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

A3 =

 0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

Fig. 3. Adjacency matrices for the configuration in Fig. 2(a)

of the configuration to be relocated. This is because Def.
6 excludes immobile cubes within the configuration (i.e.
cubes that have six neighbors) from the movable set. While
M is a set of movable cubes, we need to find potential
target positions for cubes ci ∈ M - the immediate target
successor set R.

Definition 7. The immediate target successor set R is
defined as positions cj ∈ CT that are adjacent to the
current configuration, i.e. lie in the one-hop neighborhood
N1(C) of the current configuration C as well as in the
target configuration CT . R = (CT ∩ N1(C)) \ C, where
N1(C) = {cj |cj /∈ C ∧ ci ∈ C ∧ dist(ci, cj) = 1} (see Fig.
1(c)). Therefore, R is a subset of N1(C).

Note that N1(C) is the one-hop hull of the current config-
uration C and at the same time the planning space for the
path planner. In that planning space, we plan a path pi
for a single cube at a time, i.e. from ci ∈ M to cj ∈ R.
We know by assumption that R is nonempty unless the
target configuration has already been assembled. The path
pi is only allowed to contain positions ck ∈ N1(C) and use
primitive motions to move the current cube ci.

Definition 8. A path is a concatenation of motions m ∈
{mc,ms} (see Def. 1 and Def. 2) that move cube ci ∈ (CI \
O) ∩M to position cj ∈ CT ∩ R. The length of the path
pi, or the total number of motions, is denoted as |pi|.

Both M and R define a set of cubes. Before we can plan
a path for a cube ci to a position cj , we need to define
an assignment. Therefore, we calculate the pairwise costs
between any two cubes ci ∈ M and cj ∈ R and pick
the pair of cubes with the lowest cost. The assignment
resulting from this greedy approach is then used as input
for the path planner. This process is repeated for all cubes
ci ∈ CI \ O and paths are computed to their respective
target positions cj ∈ CT . Note that this approach ensures
that progress is never blocked and the target configuration
will indeed be assembled if it is possible.
In this paper, we use A* for path planning together

with the Manhattan distance as cost metric as it most
accurately represents the discrete lattice structure of our
system and the possible movements of the nodes. Other
planners can of course be used, but we made this choice
due to A*’s properties of optimality and completeness,
which ensure us to find the optimal paths in polynomial
time assuming that the heuristic meets the requirements
defined in Russell and Norvig [2003]. The Manhattan
distance we use as heuristic does fulfill these criteria. The
result of the path planning stage is a set of paths that
describe the complete reconfiguration from CI to CT . This
set of paths is then rewritten into a ruleset as discussed in
the next section.

5. RULE GENERATION

In this paper, we employ graph grammatical concepts to
bridge the gap between global information that is available
during planning and local information that is available
to the cubes during reconfiguration. The centralized path
planning results are rewritten into rules that can be
checked locally for applicability. Contrary to rules only
based on connectivity information, graph grammars offer
fine-grained control over the applicability of rules and
allow the encoding of additional information into the
labels of the rules. Before we introduce our rule generation
and execution approach, we define the graph grammatical
terms used in this paper, taken from Klavins et al. [2006].

Definition 9. A production rule or simply a rule consists
of two labeled graphs; a left-hand side gl and a right-hand
side gr. It describes a transformation of a graph GS , that
is isomorphic to gl, from GS to gr.

A graph grammar is a set of production rules that operate
on a graph G0. Therefore, we call the pair (G0,Φ) a
system, where G0 is an initial labeled graph and Φ is a
graph grammar. A rule r ∈ Φ can be applied to G0 only
when it is applicable:

Definition 10. A rule is applicable to G if there exists a
subgraph GS of G that is isomorphic to gl. This is also
denoted as GS

∼= gl.

Once the applicability of a rule r to a subgraphGS ofG has
been determined, r can be applied to G. The application

of a rule r yields a new graph Gi
r−→ Gi+1, where Gi+1

results from Gi by replacing the subgraph GS with gr.
Each step in the reconfiguration process yields a graph Gi

that is part of a trajectory, i.e. a finite or infinite sequence
σ = {Gi}ki=0 s.t. there exists a sequence of applicable rules

{ri}k−1
i=0 where ri ∈ Φ and Gi

ri−→ Gi+1. The set of all
trajectories is denoted as T (G0,Φ) and the ith graph of
σ ∈ T as Gi. Each graph Gi as part of a trajectory is
called reachable by the system (G0,Φ). A reachable graph
can be temporary, such that some rule r in Φ is applicable
to it, or stable (see Klavins et al. [2006]).

Definition 11. A graph G is stable, if no rule in Φ is
applicable to it.

Stable graphs play an important role in this paper. In this
section, we prove that the graph representing CT is the
only reachable stable graph given a system (G0,Φ). Here,
G0 is derived from CI and Φ is an automatically generated
graph grammar. Furthermore, this section describes the
structure of our rules, shows how we derive graphs from
configurations of cubes, and presents the rule generation
framework.

5.1 Rule Structure

For the purpose of self-reconfiguration, a production rule
for our system uses the rule structure shown in Def. 9 and
its two labeled graphs gl and gr are defined as follows:

gl = f(N2(ci, C))
gr = f(N2(ci +m, C)),

f is given below but essentially maps from cubesets to
graphs. N2(ci, C) is the immediate motion successor set of
the current cube ci in the configuration C and is given by
N2(ci, C) = {cj ∈ C|ci ∈ C ∧ dist(ci, cj) ≤

√
2}. N2(ci, C)

contains all cubes at a distance of one primitive motion
from cube ci. Both graphs, gl and gr, are derived from
the sets N2(ci, C) and N2(ci + m, C) of ci and its current
motion m (given by the path planner) via the cubeset-to-
graph mapping f .

Definition 12. The relationship between a cubeset C and
a graph G = (V,E, lG) is given by the cubeset-to-graph
mapping f, which is defined as f = h ◦ g such that
f(C) = (V,E, lG) with mappings g and h defined in Section
3. The inverse graph-to-cubeset mapping f−1 is given by
f−1 = g−1 ◦ h−1 such that f−1(V,E, lG) 3 C.

The application of a rule r to a subgraph GS , i.e. r(GS
∼=

gl) = gr, yields a new graph G′. The changes in the edge

and label set described by G = (V,E, lG)
r−→ (V,E′, l′G) =

G′ represent the motion in the configuration space, i.e.
C = f−1(G) and C′ = f−1(G′), where ci has been moved
from ci ∈ C to ci + m ∈ C′. Fig. 4 shows a graphical
representation of N2(ci, C) = f−1(gl) and N2(ci +m, C) =
f−1(gr) of some rule. The highlighted cube is the currently
active cube ci.

(a) Left-hand side of a rule (b) Right-hand side of a rule

Fig. 4. Visual representation of a rule that shows a convex
motion of cube 1.

ID : 130
g l s t r u c t : [1 x1 s t r u c t]
g l l a b e l s : ’ 114 ,130 ,1 ,25 ’
g r s t r u c t : [1 x1 s t r u c t]
g r l a b e l s : ’ 114 ,131 ,1 ,25 ’
update ne ighbors : []

Listing 1. Rule data structure

As part of gl and gr, each rule contains information about
how the labels of the current node change through the
application of the rule as well as optional label updates for
the neighbors (see example in Listing 1). Since the labels
of gl and gr in the rules we generate are essential in guar-
anteeing the properties of our reconfiguration approach,
we will present a detailed description of their structure.
Listing 1 shows that each label is composed of multiple,
comma-separated data fields. These data fields include the
node ID, the rule ID, a flooding flag indicating the start
and the end of the flooding process, and a field storing
the latest finished path (see fields gl labels and gr labels
in Listing 1). The node ID and the rule ID are globally
unique integers and ensure the uniqueness of each rule
and the unambiguity of the whole reconfiguration. The
flooding flag controls the start and end of the propagation
process to update every node’s knowledge about the latest
finished path. The field last path concludes a label and
stores the most recently finished path locally at every
node. This field also controls the execution sequence of all
individual paths, since the execution of path pi depends
on the conclusion of path pi−1. The initial labeling of all
nodes of the graph G0 = (V,E, lG) = f(CI) and the label
update mechanism through rules are designed so that only
one rule is applicable to any cube vi ∈ V at any given
time. Therefore, the reconfiguration is unambiguous and
deterministic.

5.2 Rule Generation

The main contribution of this paper is the automatic
generation of a graph grammar Φ that describes the unam-

biguous reconfiguration CI Φ−→ CT . The path planning and
the rule generation are interleaved, which means that once
a path pi (i ∈ {1..|P |} where |P | = |CI \ Oinit| = |CT \
Oinit|) has been computed, the ruleset Rpi that represents
pi is generated. Rpi consists of |pi| motion rules, one
flooding activation rule, and one propagation rule. More

formally Rpi
is defined as Rpi

= {{rmi
}|pi|
i=1, rp, rf}. The

entire ruleset Φ is composed of all sub-rulesets Rpi
, i.e.

Φ = {{Rpi}
|P |
i=1}. The three types of generated rules are

defined as follows:

Definition 13. A motion rule rm changes the edge set and
the label set of the graph G = (V,E, lG), specifically
those edges whose end point is the current node vi.
Therefore, the application of a motion rule results in the
motion of a cube ci (represented by node vi ∈ G) in
the configuration space C. More formally, rm rewrites the
graph G = (V,E, lG) the following way:

(V,E, lG(vi))
rm−−→ (V,E′, l′G(vi))

The labels change from lG(vi) to l′G(vi) as follows:

l′G(vi) −→ rule id = lG(vi) −→ rule id+ 1

Definition 14. A flooding activation rule rf updates the
last path field of the current node vi and sets the flooding
flag from 1 to 0, which activates the corresponding prop-
agation rule. A flooding rule only affects the labels of the
current node vi and does change the edge set. Therefore,
it does not result in a cube movement in the configuration
space. More formally, rf rewrites the graph G = (V,E, lG)
the following way:

(V,E, lG(vi))
rf−→ (V,E, l′G(vi))

The labels change from lG(vi) to l′G(vi) as follows:

l′G(vi) −→ rule id = lG(vi) −→ rule id+ 1
l′G(vi) −→ flooding = 0

Definition 15. A propagation rule rp updates the current
node vi’s labels by setting the flooding flag from 0 to 1
and incrementing the last path field of all its neighbors
vj ∈ f(N2(ci, C)). It also sets the flooding flag of its
neighbors vj to 0 so that the same rule rp is applicable to
them. This type of rule is a wildcard rule w.r.t. the node
ID, i.e. it applies to every node independent of the node
ID if all other label fields agree. A propagation rule does
not change the edge set and therefore does not result in a
cube movement in the configuration space. More formally,
rp rewrites the graph G = (V,E, lG) the following way:

(V,E, lG(vi, vj))
rp−→ (V,E, l′G(vi, vj))

The labels change from lG(vi, vj) to l′G(vi, vj) as follows:

l′G(vi) −→ rule id = lG(vi) −→ rule id+ 1
l′G(vi) −→ path = lG(vi) −→ path+ 1
l′G(vi) −→ flooding = 1
l′G(vj) −→ flooding = 0

For each motion mj in the path pi, the neighborhood
structure of two consecutive positions of the active cube
is calculated and stored in a rule. Additionally, each rule
stores the labels before and after the application of the
rule (see example in Listing 1, fields gl labels and gr labels).
More formally, for each motion mj (j ∈ {1..|pi|} as defined
in Def. 8) of path pi, our algorithm generates a motion rule
ri,j composed of gl and gr:

gl = f(N2(ci + (

j∑
k=1

mk)−mj , C)

gr = f(N2(ci +

j∑
k=1

mk, C)

Here, ci is the currently moved cube and the starting point
of path pi and N2(ci, C) is the immediate motion successor

set as defined in Section 5.1. The labels of gl are defined
as follows:

lG(gli,j) =

 lG(gri,j−1
) if j > 1

lG(gri−1,length(pi−1)
) if j = 1, i > 1

lG,init otherwise

The labels of gr are derived from the labels of gl via the
label update mechanism defined for motion rules, flooding
rules, and propagation rules and can be summarized as
follows.

lG(gri,j) =

lG(gli,j)

rm−−→ lG(gri,j) for motion rules

lG(gli,j)
rf−→ lG(gri,j) for flooding rules

lG(gli,j)
rp−→ lG(gri,j) for propagation rules

The labels are created with a strictly monotonically in-
creasing global rule ID ensuring that each rule is globally
unique and describes exactly one step in the complete
reconfiguration sequence. Such a step is exemplified in
Listing 1. The application of the shown rule with ID 130
changes the edge set of the immediate motion successor
set of node 114 (specified by gl struct and gr struct) and
updates its labels such that the next applicable rule is rule
number 131 (see field gl labels and gr labels).

This process is repeated for every motion mj of path pi.
After the end of the current path pi is reached a flooding
activation rule and a propagation rule are generated,

resulting in a ruleset Rpi
= {{rmi

}|pi|
i=1, rp, rf}. The rule

generation process is repeated for every path pi (i ∈
{1..|P |}) until the reconfiguration is completed, i.e. until
the target configuration CT has been assembled. This
means that the only reachable, stable graph as defined
in Def. 11 is the graph representing the desired target
configuration CT .

Theorem 1. The graph G = (V,E, lG) = f(CT) repre-
senting the target configuration CT is the only reachable,
stable graph to the ruleset Φ.

Proof 1. This proof is based on Theorem 1 in Rus and
Vona [2001] and the definition and properties of a unit-
modular self-reconfiguring system. Our system is com-
posed of unit cubes, which can be assembled into arbi-
trarily shaped configurations. Thus our system satisfies
property one. Property two states that in a configuration
composed of unit modules, there always exists a module
that can be relocated to any position on the surface S.
In our system, S is defined as S = N1(C) = {ci|ci /∈ C ∧
cj ∈ C ∧ dist(ci, cj) = 1} and R is a subset of S, R ⊂ S.
The movable set M, on the other hand, is a subset of the
boundary ∂C of C, where ∂C = {ci|ci ∈ C∧|N (ci, C)| ≤ 5}.
|M| ≥ 2 according to Lemma 6 in Rus and Vona [2001] and
only contains cubes ci ∈ ∂C. Therefore, our system fulfills
property two of Theorem 1 as well. As a result, our system
is self-reconfigurable and CT can be assembled incremen-
tally from CI . Therefore, every cube ci ∈ CI \ Oinit will
be moved to its target position cj ∈ CT . Since the current
configuration C always remains connected (by construction
of M and R), i.e. c(G) = c(f(C)) = 1, a path always
exists between ci and cj . The individual module paths
are planned sequentially, which means that path pi+1 is
planned after path pi was planned and executed. This
approach implicitly determines a unique reconfiguration
sequence, i.e. the order in which all cubes are relocated.
The outcome of the planning stage, i.e. the execution of

paths pi for i ∈ {1, . . . , N} with N = |CI\Oinit|, therefore,
unambiguously yields CT .
The rule and path generation are interleaved. After each
path pi has been planned, each motionmj of pi is rewritten
into a rule ri,j with a globally unique rule number. These
rule numbers are unique, strictly monotonically increasing,
and are encoded in the labelsets of ri,j . As a result,
the applicability of rule ri,j depends on the successful
execution of rule ri,j−1. Therefore, the same sequence of
reconfiguration steps is achieved as in the planning stage
and the execution of the ruleset can only result in the
target configuration CT . Therefore, we can conclude that
the only reachable, stable graph is (V,E, lG) = f(CT). 2

5.3 Ruleset Execution

The goal of the ruleset execution is the reconfiguration of
CI into CT . In other words, given a system (G0,Φ) we want

to execute the assembly sequence G0
r1−→ G1

r2−→ G2
r3−→

. . .
rn−→ Gstable, where G0 = f(CI), Gstable = f(CT),

and n is the total number of rules. To accomplish this
reconfiguration, every node vi ∈ G periodically checks
the ruleset for applicable rules r ∈ Φ. If the graph
represented by the current neighborhood N2(ci, C), i.e.
GS = f(N2(ci, C)) is isomorphic to the left-hand side gl
of some rule r ∈ Φ, an applicable rule has been found
and is applied to the current node vi. Here, ci ∈ C is the
cube represented by node vi ∈ V . The application of a

rule r rewrites the subgraph GS into gr, i.e. GS
r−→ gr.

If the application of a rule changes the edge structure of
GS , which is the case only for motion rules, the cube ci
is moved in the configuration space. The execution of the
last motion rule rmi,|pi|

of a path pi triggers a flooding
activation rule rfi . This rule in turn triggers a propagation
rule rpi . Through the repeated application of rpi to every
node vi ∈ V every node’s local state is updated about the
completion of the latest path through directed flooding.
This process is repeated until every path pi is completed
and no more rules in Φ are applicable to any node vi ∈ V ,
i.e. until a stable graph is reached. An example of a
reconfiguration sequence is shown in Fig. 7.

6. RESULTS

This section presents simulation results obtained in two
experiments. We simulated the reconfiguration of overlap-
ping configurations in the form of rectangular prisms (see
Table 1) and the reconfiguration of overlapping random
configurations (see Table 2). These configurations ranged
in size from 100 to 500 modules. Our test system was
equipped with an Intel Core i5-540M dual core processor
and 4GB of DDR3 memory. Our simulator was imple-
mented in Matlab 2010a running on Ubuntu 11.04.
The results of our simulations are shown in Table 1 and
Table 2. In these tables, the field Size refers to the number
of modules in the configuration, Overlap is the number of
initially overlapping modules, Steps is the total number of
motions of all modules to achieve the desired reconfigu-
ration, Rules is the total number of rules in the ruleset,
and Runtime is the time it took to generate the ruleset
and complete the planning stage. As shown in Fig. 5
and Fig. 6 the size of the ruleset increases approximately
linearly with the number of nodes, while the runtime of

Table 1. Reconfiguration planning results for
overlapping box configurations

Size Overlap [N]/[%] Steps Rules Runtime [min]

100 30 / 30% 837 907 3.70

200 60 / 30% 1543 1683 16.65

300 90 / 30% 2426 2636 63.26

400 120 / 30% 3279 3559 135.64

500 150 / 30% 4275 4625 246.93

Table 2. Reconfiguration planning results for
overlapping random configurations

Size Overlap [N]/[%] Steps Rules Runtime [min]

100 36 / 36% 352 416 2.25

200 114 / 57% 403 489 10.97

300 157 / 52.3% 893 1036 40.52

400 182 / 45.5% 1674 1890 120.84

500 231 / 46.2% 2327 2590 272.68

100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Configuration size [N]

R
u

n
ti
m

e
 [

m
in

]

100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

R
u

le
s
e

t
s
iz

e
 [

N
]

100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

R
u

le
s
e

t
s
iz

e
 [

N
]

Runtime [min]

Ruleset size [N]

Quadratic approximation for runtime

Linear approximation for ruleset size

Fig. 5. Number of generated rules and required runtime
for ruleset generation of box configurations

our algorithm increases approximately quadratically for
the box and cubically for the random configurations. The
runtime is primarily determined by the planning approach,
which necessitates planning a path for every individual
node. Our algorithm features a time complexity of O(N2)
for the relocation of an individual cube and a total time
complexity of O(N3) for the entire reconfiguration process.
The experimental results shown in Fig. 6 confirm the
expected time complexity of O(N3) while the results in
Fig. 5 show only a quadratic dependency on the config-
uration size N . The reason for this behavior is that the
Manhattan distance used as cost metric for A* is a signif-
icantly better heuristic for regular geometric shapes such
as rectangular prisms. Therefore, the planning time for the
reconfiguration of box configurations is lower compared to
random reconfigurations even though the total path length
is higher (as shown in Table 1 compared to Table 2).

7. CONCLUSIONS

In this paper, we have introduced an approach to automate
reconfiguration planning and to automatically generate
graph grammars. We have shown that our approach can
reconfigure arbitrary configurations CI into any other
arbitrary configuration CT . We treat the reconfiguration

Fig. 7. Example of a reconfiguration sequence from a random two-dimensional configuration to a chair configuration.

100 150 200 250 300 350 400 450 500
0

100

200

300

Configuration size [N]

R
u
n
ti
m

e
 [
m

in
]

100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

R
u
le

s
e
t
s
iz

e
 [
N

]

100 150 200 250 300 350 400 450 500
0

1000

2000

3000

R
u
le

s
e
t
s
iz

e
 [
N

]

Runtime [min]

Ruleset size [N]

Cubic approximation for runtime

Linear approximation for ruleset size

Fig. 6. Number of generated rules and required runtime
for ruleset generation of random configurations

problem as a two-stage process containing a planning and
execution stage. The centralized planning stage of our ap-
proach necessitates global knowledge of the configuration
to generate the ruleset, while the decentralized execution
stage works with local neighborhood information only.
This is also the main advantage of our approach. While
the generation of the ruleset features a time complex-
ity of O(N3), the ruleset can be executed in a highly
parallel fashion with each node checking simultaneously
for applicable rules. Since the size of the ruleset grows
approximately linearly in the configuration size N , this
approach scales well.

REFERENCES

D. Brandt, D. J. Christensen, and H. H. Lund. Atron
robots: Versatility from self-reconfigurable modules. In
In Proceedings of the IEEE International Conference
on Mechatronics and Automation (ICMA), pages 2254–
2260, Harbin, China, Aug. 2007.

David Brandt and Esben H. Ostergaard. Behaviour
subdivision and generalization of rules in rule-based
control of the atron self-reconfigurable robot, 2004.

Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita.
Generic decentralized control for lattice-based self-
reconfigurable robots. The International Journal of
Robotics Research, 23(9):919–937, 2004.

R. Fitch and Z. Butler. Scalable locomotion for large self-
reconfiguring robots. In Robotics and Automation, 2007

IEEE International Conference on, pages 2248 –2253,
April 2007.

R. Fitch, Z. Butler, and D. Rus. Reconfiguration planning
for heterogeneous self-reconfiguring robots. In Intel-
ligent Robots and Systems, 2003. (IROS 2003). Pro-
ceedings. 2003 IEEE/RSJ International Conference on,
volume 3, pages 2460 – 2467, Oct. 2003.

Chris Jones and Maja J. Mataric. From local to global
behavior in intelligent self-assembly. In Proceedings of
the 2003 IEEE International Conference on Robotics
and Automation, ICRA 2003, September 14-19, 2003,
Taipei, Taiwan, pages 721–726. IEEE, 2003.

E. Klavins. Programmable self-assembly. Control Systems,
IEEE, 27(4):43 –56, Aug. 2007.

E. Klavins, R. Ghrist, and D. Lipsky. A grammatical
approach to self-organizing robotic systems. Automatic
Control, IEEE Transactions on, 51 Issue: 6:949 – 962,
2006.

Daniela Rus and Marsette Vona. Crystalline robots:
Self-reconfiguration with compressible unit modules.
Autonomous Robots, 10(1):107–124, Jan. 2001.

Stuart J. Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Pearson Education, 2003. ISBN
0137903952.

Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus,
Mark Moll, Hod Lipson, Eric Klavins, and Gregory S.
Chirikjian. Modular self-reconfigurable robot systems
– challenges and opportunities for the future. IEEE
Robotics and Autonomation Magazine, March:43–53,
2007.

