
A Game-theoretic Formulation of the Homogeneous
Self-Reconfiguration Problem

Daniel Pickem1, Magnus Egerstedt2, and Jeff S. Shamma3

Abstract— In this paper we formulate the homogeneous
two- and three-dimensional self-reconfiguration problem over
discrete grids as a constrained potential game. We develop a
game-theoretic learning algorithm based on the Metropolis-
Hastings algorithm that solves the self-reconfiguration problem
in a globally optimal fashion. Both a centralized and a fully de-
centralized algorithm are presented and we show that the only
stochastically stable state is the potential function maximizer,
i.e. the desired target configuration. These algorithms compute
transition probabilities in such a way that even though each
agent acts in a self-interested way, the overall collective goal of
self-reconfiguration is achieved. Simulation results confirm the
feasibility of our approach and show convergence to desired
target configurations.

I. INTRODUCTION

Self-reconfigurable systems are comprised of individual
agents which are able to connect to and disconnect from one
another to form larger functional structures. These individual
agents or modules can have distinct capabilities, shapes, or
sizes, in which case we call it a heterogeneous system (for
example [6]). Alternatively, modules can be identical and
interchangeable, which describes a homogeneous system (see
[9]). In this paper, we will present algorithms that reconfigure
homogeneous systems and treat self-reconfiguration as a two-
and three-dimensional coverage problem.

Self-reconfiguration is furthermore understood to solve the
following problem. Given an initial geometric arrangement
of cubes (called a configuration) CI and a desired target
configuration CT , the solution to the self-reconfiguration
problem is a sequence of primitive cube motions that re-
shapes/reconfigures the initial into the target configuration
(see Fig. 1). The problem setup is then the following.
• The environment E is a finite two- or three-dimensional

discrete grid, i.e. E ⊆ Z2 or E ⊆ Z3.
• N agents P = {1, 2, . . . , N} move in discrete steps

through that grid.
• Each agent has a restricted action set Ri which contains

only a subset of all its possible actions Ai.
• An agent’s utility Ui(a ∈ A) is inversely proportional

to the distance to the target configuration.

This research was sponsored by AFOSR/MURI Project #FA9550-09-1-
0538 and ONR Project #N00014-09-1-0751.

1D. Pickem is a Ph.D. student in Robotics, Georgia Institute of Technol-
ogy, Atlanta, USA daniel.pickem@gatech.edu

2M. Egerstedt is with the Faculty of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA magnus@gatech.edu

3J. S. Shamma is with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, USA
shamma@gatech.edu, and with King Abdullah University
of Science and Technology (KAUST), Thuwal, Saudi Arabia
jeff.shamma@kaust.edu.sa.

Many approaches to self-reconfiguration have been presented
in the literature, each with certain short-comings. There have
been centralized solutions [18], distributed solutions that
required a large amount of communication [6] or precompu-
tation [5], approaches that were either focused on locomotion
[3] or functional target shape assemblies [10]. Distributed
approaches have often relied on precomputation of rulesets
[7], policies [5], or entire sets of paths/folding schemata of
agents [4].

In this paper, we present a fully decentralized approach to
homogeneous self-reconfiguration for which no central deci-
sion maker is required. Our method guarantees convergence
to the target configuration even though each agent acts as
a purely self-interested individual decision maker with local
information only. Decision making requires no (in the two-
dimensional case) or limited communication (in the three-
dimensional case).

The rest of this paper is organized as follows. Section
II discusses relevant related work. Section III presents the
system setup and theoretical formulation of the problem.
In Section IV we discuss the completeness of deterministic
reconfiguration, which is used in Section V to prove the
existence of a unique potential function maximizer. In Sec-
tion VI we decentralize the stochastic algorithm and present
simulation results in Section VII

II. RELATED WORK

In this section we want to highlight decentralized ap-
proaches in the literature that bear resemblance to methods
presented in this paper. Especially relevant to the presented
results in this paper are homogeneous self-reconfiguration
approaches such as [3], and [9], which employ cellular
automata and manually designed local rules to model the
system. Similar work in [5] shows an approach for locomo-
tion through self-reconfiguration represented as a Markov
decision process with state-action pairs computed in a dis-
tributed fashion. The presented algorithms are decentralized
but only applicable to locomotion and not the assembly of
arbitrary configurations.

Precomputed rules are also used in [7], where a decen-
tralized approach is presented based on graph grammatical
rules. Graph grammars for the assembly of arbitrary acyclic
target configurations are automatically generated. Whereas
these approaches are able to assemble arbitrary target config-
urations, they rely on precomputing rulesets for every target
configuration.

The algorithms presented in this paper are inspired by
the coverage control literature, specifically game-theoretic

Fig. 1: Example of self-reconfiguration sequence from a random 2D configuration (left) to another random 2D configuration
(right). Approximately every 20th time step is shown.

formulations such as [1], [11], and [20]. Both static sensor
coverage as well as dynamic coverage control with mobile
agents are discussed. Note, however, that agents in these
papers are limited to movement in two dimensions and
operate with a different motion model and most importantly
different constraints.

We address these problems with a decentralized algorithm
that does not rely on precomputed rulesets, can be used for
locomotion as well as the assembly of arbitrary two- and
three-dimensional shapes, can handle changing environment
conditions as well as changing target configurations, and is
scalable to large number of modules due to its decentralized
nature.

III. PROBLEM FORMULATION

In this work, we represent agents as cubic modules that
move through a discrete lattice or environment E = Zd in
discrete steps.1 Without loss of generality these cubes have
unit dimension. Therefore, an agent’s current state or action
ai (in a game-theoretic sense) is an element ai ∈ Zd. Note
that an agent’s action is equivalent to its position in the
lattice. Cubes can be thought of as geometric embeddings
of the agents in our system. Therefore, a configuration C
composed of N agents is a subset of the representable space
ZdN (see [16]). Moreover, we will deal with homogeneous
configurations, in which all agents have the same properties
and are completely interchangeable.

A. Motion Model

In the sliding cube model (see [3], [15], [16], [18]), a cube
is able to perform two primitive motions - a sliding and a
corner motion. In general, a motion specifies a translation
along coordinate axes and is represented by an element m ∈
Zd. A sliding motion is characterized by ‖ms‖L1

= 1, i.e.

1Since we present two- and three-dimensional self-reconfiguration,
throughout this paper, the dimensionality d will be d ∈ {2, 3}.

ms,i = 1 for one and only one coordinate i ∈ 1, . . . d, which
translates a cube along one coordinate axis. A corner motion
on the other hand is defined by ‖mc‖L1

= 2 such that mc,i =
1 for exactly two coordinates i ∈ 1, . . . d, which translates a
cube along two dimensions.

B. Game-theoretic Formulation

In this section we formulate the homogeneous self-
reconfiguration as a potential game (see [14]), which is
a game structure amenable to globally optimal solutions.
Generally, a game is specified by a set of players i ∈
P = {1, 2, . . . , N}, a set of actions Ai for each player,
and a utility function Ui(a) = Ui(ai, a−i) for every player
i. In this notation, a denotes a joint action profile a =
(a1, a2, . . . , aN) of all N players, and a−i is used to denote
the actions of all players other than agent i.
In a constrained game, the actions of agents are constrained
through their own and other agents’ actions. In other words,
given an action set Ai for agent i, only a subsetRi(a)) ⊂ Ai
is available to agent i. A constrained potential game is
furthermore defined as follows.

Definition 1: A constrained exact potential game (see
[20]) is a tuple G = (P,A, {Ui(.)}i∈P , {Ri(.)}i∈P ,Φ(A)),
where
• P = {1, . . . , N} is the set of N players
• A = A1 × · · · × AN is the product set of all agents’

action sets Ai
• Ui : A→ R are the agents’ individual utility functions
• Ri : A → 2Ai is a function that maps a joint action to

a restricted action set for agent i
Additionally, the agents’ utility functions are aligned with a
global objective function or potential Φ : A → R if for all
agents i ∈ P , all actions ai, a′i ∈ Ri(a), and actions of other
agents a−i ∈

∏
j 6=iAj the following is true

Ui(a
′
i, a−i)− Ui(ai, a−i) = Φ(a′i, a−i)− Φ(ai, a−i)

The last condition of Def. 1 implies an alignment of
agents’ individual incentives and the global goal. Therefore,
under unilateral change (only agent i changes its action from
ai to a′i) the change in utility for agent i is equivalent to the
change in the global potential Φ. This is a highly desirable
property since the maximization of all agents’ individual
utilities yields a maximum global potential. We can now
formulate the self-reconfiguration problem in game-theoretic
terms and show that it is indeed a constrained potential game.

Definition 2: Game-theoretic self-reconfiguration can be
formulated as a constrained potential game, where the indi-
vidual components are defined as follows:
• The set of players P = {1, 2, . . . , N} is the set of all
N agents in the configuration.

• The action set of each agent Ai ⊂ Zd is a finite set of
discrete lattice positions

• The restricted action sets Ri(a ∈ A) are computed
according to Section III-C.

• The utility function of each agent is Ui(a) =
1

dist(ai,CT)+1 . Here, CT is the target configuration and
dist(ai, CT) = minaj∈CT ‖ai − aj‖.

• The global potential Φ(a ∈ A) =
∑
i∈P

Ui(a).

Note that the utility of an agent is independent of all other
agents’ actions and depends exclusively on its distance to
the target configuration. An agent’s action set, however, is
constrained by its own as well as other agents’ actions. The
goal of the game-theoretic self-reconfiguration problem is to
maximize the potential function, i.e.

max
a∈A

Φ(a) = max
a∈A

∑
i∈P

Ui(a)

This can be interpreted as a coverage problem where the
goal of all agents is to cover all positions in the target
configuration. Therefore maximizing the potential is equiv-
alent to maximizing the number of agents that cover target
positions ai ∈ CT . The following propositions shows that
this formulation indeed yields a potential game (a proof is
given in [17]).

Proposition 1: The self-reconfiguration problem in Def.
2 constitutes a constrained potential game with Φ(a) =∑
i∈P

Ui(a) and Ui(a) = 1
dist(ai,CT)+1 .

As we will see in Section VI, this potential game structure
allows us to derive a decentralized version of the presented
learning algorithm.

C. Action Set Computation

A core component of constrained potential games is the
computation of restricted action sets. Unlike previous work
(see for example [12] and [20]), agents in our setup are
constrained not just by their own actions, but also those of
others. In this section we present methods for computing
restricted action sets that obey motion constraints as well as
constraints imposed by other agents.

a) 2D reconfiguration: In the two-dimensional case
agents are restricted to motions on the xy-plane. Unlike
in previous work (see [15] and [16]) where we required a

configuration to remain connected at all times, in this work,
agents are allowed to disconnect from all (or a subset of)
other agents. This approach enables agents to separate from
and merge with other agents at a later time. To formalize
this idea, we first review some graph theoretic concepts.

Definition 3: Let G = (V,E) be the graph composed of
N nodes with V = {v1, v2, . . . , vN}, where node vi repre-
sents agent or location i. Then G is called the connectivity
graph of configuration C if E = V × V with eij ∈ E if
‖ai − aj‖ = 1.
This definition implies that two nodes vi, vj in the connectiv-
ity graph are adjacent, if agent or location i and j are located
in neighboring grid cells. Note that a connectivity graph can
be computed for any set of grid positions, whether these
positions are occupied by agents or not. We furthermore use
the notions of paths on graphs and graph connectivity in the
usual graph theoretic sense. Note that G is not necessarily
connected as (groups of) agents can split off. Based on the
connectivity graph G and the current joint action, we now
define the function Ri : A → 2Ai , which maps from the full
joint action set to a restricted action set for agent i and is
based on the following two definitions of primitive actions
sets.

Definition 4: The set of all currently possible sliding
motions is Ms =

{
a′i ∈ Zd \ a−i : ‖ms‖L1

= 1
}

, where
ms = a′i − ai.

Definition 5: The set of all currently
possible corner motions is Mc ={
a′i ∈ Zd \ a−i : ‖mc‖L1

= 2 ∧ mc,j ∈ {0, 1}
}

, where
j ∈ [1, . . . , d] and mc = a′i − ai.
Note that Ms and Mc in Def. 4 and Def. 5 are equally
applicable to 2D and 3D. These definitions encode the
motion model outlined in Section III-A and allow us to define
the restricted action set in two dimensions as follows.

Definition 6: The two-dimensional restricted action set is
given by R2D

i (a) =Ms ∪Mc.
This definition ensures that agent i can only move to unoccu-
pied neighboring grid positions a′i through sliding or corner
motions (or stay at its current position ai). All other agents
replay their current actions a−i.

b) 3D reconfiguration: Whereas in the 2D case agents
were allowed to move to all unoccupied neighboring grid
cell regardless of connectivity constraints, in the three-
dimensional case we introduce the requirement of ground-
edness. An agent is immobile, if executing an action would
remove groundedness from any of its neighbors. Grounded-
ness requires a notion of ground plane, which is defined as
follows.

Definition 7 (Ground Plane): The ground plane is the set
SGP = {s ∈ E : sz = 0} where E ⊆ Z3 and the
corresponding connectivity graph is GGP = (VGP , EGP)
with eij ∈ EGP if ‖si − sj‖ = 1.
Note that the ground plane is defined as the xy-plane and
its connectivity graph GGP is, by definition, connected.
Positions s ∈ SGP are not allowed to be occupied by
agents, therefore ai ∈ Ai \ SGP ∀i ∈ P . Using the graph
GGP , we define G′ = (V ′, E′) as V ′ = V ∪ VGP and

E′ = V ′ × V ′ such that eij ∈ E′ if for vi, vj ∈ V ′ we
have ‖ai − aj‖L1

= 1. Note that G′ represents the current
configuration including the ground plane, and ai represents
an action of an agent or an unoccupied position in the ground
plane.

Definition 8 (Groundedness): An agent i is grounded if
there exists a path on G′ from vi ∈ V ⊂ V ′ to some vk ∈
VGP ⊂ V ′, where vi represents agent i in the connectivity
graph G (see Def. 3). A configuration C is grounded if every
agent i ∈ P is grounded.
The idea behind groundedness hints at an embedding of
a self-reconfigurable system in the physical world, where
agents cannot choose arbitrary positions in the environment.
Additionally, like connectivity, groundedness enforces some
level of cohesion among the agents, but without incurring
costly global connectivity checks. Most importantly, we
use the notion of groundedness to prove completeness of
deterministic reconfiguration in Section IV.

An agent can verify groundedness in a computationally
cheap way through a depth-first search, which is complete
and guaranteed to terminate in time proportional to O(N)
in a finite space. The notion of groundedness also informs
the restricted action set computation. If all neighbors Ni =
{vj ∈ V : eij ∈ E} (see Def. 3) of agent i can compute
an alternate path to ground (other than through agent i)
then agent i is allowed to move. To formalize this idea,
let G−i = (V−i, E−i) with V−i = V ∪ VGP \ {vi} and
E−i = V−i × V−i such that eij ∈ E−i if for vi, vj ∈ V−i
we have ‖ai − aj‖L1

= 1. G−i is therefore the connectivity
graph of the current configuration including the ground plane
without agent i. R3D

i (a) is then defined as follows.
Definition 9: The three-dimensional restricted action set

R3D
i (a) =Ms ∪Mc if all agents vj ∈ Ni are grounded on

G−i. Otherwise, R3D
i (a) = {ai}.

This definition encodes the same criteria as the two-
dimensional action set with the additional constraint of
maintaining groundedness (see Fig. 2). If agent i executing
an action would leave any of its neighbors ungrounded, agent
i is not allowed to move.

IV. DETERMINISTIC COMPLETENESS

In this section we establish completeness of deterministic
reconfiguration in two and three dimensions. We will show
that for any two configurations CI and CT there exists a
deterministically determined sequence of individual agent
actions such that configuration CI will be reconfigured into
CT . These results are required to show irreducibility of the
Markov chain induced by the learning algorithm outlined in
Section V. Irreducibility guarantees the existence of a unique
stationary distribution and furthermore a unique potential
function maximizer. We first show completeness of 2D
reconfiguration.

Theorem 1 (Completeness of 2D reconfiguration):
Any given two-dimensional configuration CI can be
reconfigured into any other two-dimensional configuration
CT , i.e. there exists a finite sequence of configurations
{CI = C0, C1, . . . , CM = CT } such that two consecutive

C

SGP

c1

c2

(a) A movement of agent c1 would
remove groundedness of agent c2.

C

SGP

c2
c1
c3

(b) Agent c1 can move with-
out breaking the groundedness con-
straint for agents c2 and c3.

Fig. 2: Examples of grounded configurations and feasible
motions of cubes.

configurations differ only in one individual agent motion (a
proof is shown in [17]).
The result in Theorem 1 holds for any configuration, even
configurations that consist of multiple connected compo-
nents. Before we can show a similar result for the 3D case
we need to introduce a graph theoretic result.

Lemma 1: According to Lemma 6 in [18], any finite graph
with at least two vertices contains at least two vertices which
are not articulation points.2

Theorem 2 (Completeness of 3D to 2D reconfiguration):
Any finite grounded 3D configuration CG,3D can
be reconfigured into a 2D configuration C2D

Int, i.e.
there exists a finite sequence of configurations
{CG,3D = C0, C1, . . . , CM = C2D

Int} such that two consecutive
configurations differ only in one individual agent motion (a
proof is shown in [17]).

Corollary 1: Any finite grounded 3D configuration CG,3DI

can be reconfigured into any other finite grounded 3D
configuration CG,3DT (a proof is shown in [17]).

V. STOCHASTIC RECONFIGURATION

In this and the following section we present a stochastic
reconfiguration algorithm that is fully distributed, does not
require any precomputation of paths or actions, and can
adapt to changing environment conditions. Unlike log-linear
learning ([2]), which cannot handle restricted action sets,
and variants such as binary log-linear learning ([1], [11],
[12]), which can only handle action sets constrained by
an agent’s own previous action, the presented algorithm
guarantees convergence to the potential function maximizer
even if action sets are constrained by all agents’ actions.

Our algorithm is based on the Metropolis-Hastings algo-
rithm ([13],[8]), which allows the design of transition proba-
bilities such that the stationary distribution of the underlying
Markov chain is a desired target distribution, which we
choose to be the Gibbs distribution. This choice enables a

2An articulation point is a vertex in a graph whose removal would
disconnect the graph.

a1

a2

State xi

|Rk| = 2

qij = 1
|Rk| = 1

2

State xj

a1

|Rk′ | = 1

qji = 1
|Rk′ |

= 1

a1 a2

State xj′

a3

|Rk′′ | = 3

qji′ = 1
|Rk′′ |

= 1
3

Fig. 3: Example of forward and reverse actions with their
associated proposal probabilities qij , qji, and q′ji. Note that
xi, xj , x′j are states of the entire configuration, and agent k
is the currently active agent.

distributed implementation of the learning rule in Theorem
3 through the potential game formalism (see Corollary 2).
The Metropolis-Hastings algorithm guarantees two results:
existence and uniqueness of a stationary distribution. We
will use these properties to show that the only stochastically
stable state is x*, the potential function maximizer.

Theorem 3: Given any two states xi and xj representing
global configurations, the transition probabilities

pij =

{
qjie

1
τ (Φ(xj)−Φ(xi)) if e

1
τ (Φ(xj)−Φ(xi)) qji

qij
≤ 1

qij o.w.

guarantee that the unique stationary distribution of the un-
derlying Markov chain is a Gibbs distribution of the form
Pr[X = x] = e

1
τ

Φ(x)∑
x′∈X e

1
τ

Φ(x′) (a proof is shown in [17]).

Note that a transition from configuration xi to xj is
accomplished by agent k executing action a′ ∈ Rk starting
at its current location a. Therefore, we can interpret qij as a
transition probability for a forward action and qji as a reverse
action (see Fig. 3). Theorem 3 applies equally for 2D and
3D configuration. However, for 3D reconfiguration, the proof
relies implicitly on the notion of groundedness through the
computation of R3D

i . The following theorem requires the
definition of stochastic stability.

Definition 10 (Stochastic Stability [19]): A state xi ∈ X
is stochastically stable relative to a Markov process P ε

if the following holds for the stationary distribution π
limε→0 π

ε
xi > 0.

Note that the Markov process is defined through the transi-
tion probabilities in Theorem 3 and the stationary distribution
is a Gibbs distribution. Furthermore ε is equivalent to the
learning rate τ .

Theorem 4: Consider the self-reconfiguration problem in
Def. 2. If all players adhere to the learning rule in Theorem 3
then the unique stochastically stable state x∗ is the state that
maximizes the global potential function (a proof is shown in
[17]).

Note that the maximum global potential is achieved when
all agents are at a target position ai ∈ CT . Algorithm 1 shows
an implementation of Theorem 3.

Algorithm 1 Centralized game-theoretic learning algorithm.
Note that state xj is the result of agent k applying action
ai→j,k and xi and xj refer to states of the entire config-
uration. Corollary 2 allows a decentralized version of this
algorithm.

Require: Current and target configuration C and CT
while True do

Randomly pick an agent k in state xi
Compute restricted action set Rk
Select ai→j,k ∈ Rk with probability qij = 1

|Rk|

Compute αij = min
{

1,
qji
qij
e

1
τ (Φ(xj)−Φ(xi))

}
if αij = 1 then
xt+1 = xj

else

xt+1 =

{
xj with probability αij
xi with probability 1− αij

end if
end while

VI. A DECENTRALIZED ALGORITHM

One shortcoming of Algorithm 1 is its centralized nature
that requires the computation of a global potential function
Φ(xi) and depends on the entire current configuration xi. The
formulation of the self-reconfiguration problem as a potential
game allows us to rewrite the transition probabilities in a
decentralized fashion as follows.

Corollary 2: The global learning rule of Theorem 3 can
be decentralized through locally computable transition prob-
abilities pij , where

pij =

{
qjie

1
τ (Uk(a′k)−Uk(ak)) if e

1
τ (Uk(a′k)−U(ak)) qji

qij
≤ 1

qij o.w.
These transition probabilities can be computed and ex-

ecuted with local information only (a proof is shown in
[17]). Note that local in this context can mean multiple hops,
because the computation of restricted action sets requires to
maintain groundedness of all neighboring agents.

VII. IMPLEMENTATION

Algorithm 1 was implemented and evaluated in Matlab
with a learning rate τ = 0.001 that struck a balance between
greedy maximization of agent utilities and exploration of the
state space through suboptimal actions. Agents’ restricted
action sets depended on the agents’ joint action and the
environment - in our simulations only the ground plane
(agents were initialized on or above the ground plane, i.e.
their z-coordinate z ≥ 1). In a straightforward extension
to this algorithm, obstacles can be added to restrict the
environment even further.

Fig. 4 shows convergence results of Algorithm 1 of
configurations containing 10, 20, and 30 agents. Four types

Fig. 4: Convergence times for different types of configurations and sizes ranging from 10 to 30 agents.

of reconfigurations have been performed: 2D to 2D, 2D to
3D, 3D to 2D, and 3D to 3D. Ten trials were conducted
for each scenario and convergence was achieved once the
configuration reached a global potential of Φ = N , i.e.
every agent has a utility of Ui = 1. The vertical lines in
Fig. 4 represent the average time to convergence of all four
types of reconfigurations of a certain size (e.g. the leftmost
line represents average convergence of a configuration of
10 agents). Note that for the scenarios of Fig. 4, the target
configuration was offset from the initial configuration by a
translation of 10 units along the x-axis. One can observe that
at the beginning of each reconfiguration the global potential
ramps up very fast (within a few hundred time steps), but the
asymptotic convergence to the global optimum can be slow
(see the case 3D to 2D for 30 agents).

REFERENCES

[1] G. Arslan, J.R. Marden, and J.S. Shamma. Autonomous vehicle-target
assignment: A game-theoretical formulation. Journal of Dynamic Sys-
tems, Measurement, and Control, 129(5):584–596, September 2007.

[2] Lawrence E. Blume. The statistical mechanics of strategic interaction.
Games and economic behavior, 5(3):387–424, 1993.

[3] Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic
decentralized control for lattice-based self-reconfigurable robots. The
International Journal of Robotics Research, 23(9):919–937, 2004.

[4] Kenneth C. Cheung, Erik D. Demaine, Jonathan Bachrach, and Saul
Griffith. Programmable assembly with universally foldable strings
(moteins). IEEE Transactions on Robotics, 27(4):718–729, 2011.

[5] Robert Fitch and Zack Butler. Million module march: Scalable
locomotion for large self-reconfiguring robots. The International
Journal of Robotics Research, 27(3-4):331–343, 2008.

[6] Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning
for heterogeneous self-reconfiguring robots. In Intelligent Robots and
Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ Interna-
tional Conference on, volume 3, pages 2460 – 2467, October 2003.

[7] Michael J. Fox. Distributed Learning in Large Populations. PhD
thesis, Georgia Institute of Technology, August 2012.

[8] W Keith Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 57(1):97–109, 1970.

[9] Keith Kotay and Daniela Rus. Efficient locomotion for a self-
reconfiguring robot. In Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, pages
2963–2969, 2005.

[10] Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Shigeru Kokaji,
Takashi Hasuo, and Satoshi Murata. Distributed self-reconfiguration
of M-TRAN III modular robotic system. The International Journal of
Robotics Research, 27(3-4):373–386, 2008.

[11] Yusun Lee Lim. Potential game based cooperative control in dynamic
environments. Master’s thesis, Georgia Institute of Technology, 2011.

[12] Jason R. Marden and Jeff S. Shamma. Revisiting log-linear learning:
Asynchrony, completeness and payoff-based implementation. Games
and Economic Behavior, 75(2):788–808, 2012.

[13] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations
by fast computing machines. Journal of Chemical Physics, 21:1087–
1092, 1953.

[14] Dov Monderer and Lloyd S Shapley. Potential games. Games and
Economic Behavior, 14(1):124–143, 1996.

[15] Daniel Pickem and Magnus Egerstedt. Self-reconfiguration using
graph grammars for modular robotics. In Analysis and Design
of Hybrid Systems (ADHS), 4th IFAC Conference on, Eindhoven,
Netherlands, June 2012.

[16] Daniel Pickem, Magnus Egerstedt, and Jeff S Shamma. Complete
heterogeneous self-reconfiguration: Deadlock avoidance using hole-
free assemblies. In Distributed Estimation and Control in Networked
Systems (NecSys’13), 4th IFAC Workshop on, volume 4, pages 404–
410, September 2013.

[17] Daniel Pickem, Magnus Egerstedt, and Jeff S. Shamma. A game-
theoretic formulation of the homogeneous self-reconfiguration prob-
lem. ArXiv e-prints, 2015. Available: http://arxiv.org/abs/1509.00737.

[18] Daniela Rus and Marsette Vona. Crystalline robots: Self-
reconfiguration with compressible unit modules. Autonomous Robots,
10(1):107–124, Jan. 2001.

[19] Peyton H. Young. The evolution of conventions. Econometrica,
January 1993.

[20] M. Zhu and S. Martı́nez. Distributed coverage games for energy-aware
mobile sensor networks. SIAM Journal on Control and Optimization,
51(1):1–27, 2013.

