
Complete Heterogeneous
Self-Reconfiguration: Deadlock Avoidance

Using Hole-Free Assemblies

Daniel Pickem ∗ Magnus Egerstedt ∗ Jeff S. Shamma ∗

∗ Georgia Institue of Technology, GA 30332, USA,
{daniel.pickem, magnus, shamma}@gatech.edu

Abstract: In this paper, we present a novel approach for heterogeneous self-reconfiguration of
a modular robot comprised of heterogeneous cubic modules. We allow an arbitrary number
of modules and module classes and show that the proposed self-reconfiguration algorithm
can guarantee completion of heterogeneous self-reconfigurations by avoiding so-called hole
obstructions. We introduce a hole-detection algorithm to avoid creating holes in connected
sets of modules (furthermore called configuration) and an assignment resolution algorithm that
prevents deadlocks. Using these algorithms, we show that this approach yields provably success-
ful reconfiguration sequences from any heterogeneous initial configuration to any heterogeneous
target configuration as long as the initial and the target configuration are hole and enclosure-free.

1. INTRODUCTION

Self-reconfigurable robots are comprised of individual
modules and have the ability to change their morphology,
structure, and functionality through changing the relative
position of the modules. These modules can disconnect
and reconnect to other modules and assemble into a larger
robot. Additionally, their modular structure allows self-
reconfigurable robots to adapt to a given task (see Yim
et al. (2007) or Gilpin and Rus (2010)).
Most of the existing literature on self-reconfiguration fo-
cuses on homogeneous self-reconfigurable robots, where all
modules are identical and interchangeable (see for exam-
ple Rus and Vona (2001) or Vassilvitskii et al. (2002)).
Whereas homogeneity generally reduces the complexity of
reconfiguration algorithms (see Balch and Parker (2002)),
homogeneous reconfiguration can not guarantee absolute
module position meaning that a module can be moved to
any location in the target configuration (see Fitch et al.
(2007)). Since modules are interchangeable, this restriction
does not matter in a homogeneous system.
Heterogeneous robots on the other hand are comprised of
modules with different capabilities and potentially shape
and size. In this case, not all modules are interchangeable
anymore and it is conceivable that absolute placement of
modules is important. Therefore, a heterogeneous recon-
figuration algorithm is required to be able to move any
module x to a specific desired target position y (where y is
any position that is suitable for module x). For example,
a position in the target configuration could be reserved for
a battery module. Therefore, a heterogeneous reconfigura-
tion algorithm has to guarantee that a battery module is
placed at that position.
Another restriction of homogeneous modular robots is
their limited extendability of functionality (see Balch and
Parker (2002) or Fitch et al. (2007)). One can of course

? This research was sponsored by AFOSR/MURI Project #FA9550-
09-1-0538

add more modules to a homogeneous robot, but extending
module capabilities is difficult because either all modules
have to be extended by the same capability (e.g. an addi-
tional sensor) or the basic assumption of homogeneity is
violated. As soon as a single module differs from all others,
we have to treat the robot as a heterogeneous system.
For the purpose of this paper, the relevant characteristics
of a heterogeneous system are summarized as follows:

• Heterogeneous robots are comprised of (groups of)
modules with distinct properties.

• Absolute positioning of modules needs to be guaran-
teed for heterogeneous robots.

• Extending the capabilities of a heterogeneous robot
is cheaper and adds less hardware complexity since
only modules with the desired capabilities have to be
added instead of extending the functionality of every
module.

Note that the loss of interchangeability in heterogeneous
systems introduces additional complications such as the
potential for creating deadlocks (see Butler et al. (2002)).
In the presented algorithm, the avoidance of deadlocks
translates into the avoidance of holes (positions in the
target configuration that cannot be reached) and enclo-
sures (positions in the current configuration that cannot be
reached) during the reconfiguration process. Additionally,
we have to ensure the existence of valid assignments of
modules to their respective target positions.
This paper presents a novel approach for automatically re-
configuring heterogeneous modular robots from any given
initially hole and enclosure-free configuration into any
desired hole and enclosure-free target configuration. The
main contribution of this paper is a provably complete al-
gorithm for heterogeneous configuration that avoids dead-
locks.

2. RELATED WORK

While homogeneous self-reconfiguration has been studied
in depth in the literature, heterogeneous self-reconfiguration
has not enjoyed the same attention. This section gives an
overview of relevant work in the area of heterogeneous and
homogeneous systems.
In Pickem and Egerstedt (2012), we presented an approach
for homogeneous self-reconfiguration that was based on the
interchangeability of modules. In this paper, we extend
this system to heterogeneous modules.
Fitch et al. (2003) took a different approach to heteroge-
neous reconfiguration and introduced the melt-sort-grow
algorithm that decomposes heterogeneous reconfiguration
into three steps. Their approach requires the assembly
of an intermediate configuration, which the algorithm in
this paper avoids. In a later paper, Fitch et al. (2007)
focus on space-constrained heterogeneous reconfiguration.
They treat heterogeneous reconfiguration as a two step
process, where the first step accomplishes shape-forming
(as a homogeneous reconfiguration step) and the second
step performs a sorting of modules (ensuring heteroge-
neous module placement). Their approach decomposes
the heterogeneous reconfiguration problem into a two-step
process, whereas the algorithm in this paper combines
both steps.
Gilpin and Rus (2010) show an algorithm for creating
tightly packed configurations for self-disassembly. Their
algorithm is designed to create solid blocks of modules
with no internal holes, but is presumably not suited for
creating arbitrary configurations as shown in this work.

3. SYSTEM REPRESENTATION

In this paper, we employ a model commonly referred to as
sliding cube model (see Pickem and Egerstedt (2012) or
Rus and Vona (2001)) that employs cubic modules embed-
ded in a discrete three-dimensional unit lattice (see Figure
1). We impose no physical constraints such as gravity,
module masses, or forces on the system and assume the
reconfiguration process happens in free space.
The instantiation of the sliding cube model in this pa-
per uses modules (furthermore also called cubes) of unit
dimensions that move through a cubic lattice in discrete
steps of size one. A motion applied to a cube moves the
cube from its current position x ∈ Z3 to x + m with
x,m ∈ Z3. Each cube is able to perform two primitive
motions - sliding and corner motions. A sliding motion
is defined as a motion ms where |ms| = 1. Applying a
sliding motion ms changes a single coordinate of the cube
position by one unit and results in the cube sliding along
a surface made of other cubes. A corner motion is defined
as mc where |mc| = 2 with mc,x,mc,y,mc,z < 2. Applying
a corner motion mc changes two coordinates by one unit
at the same time and transitions a cube to an orthogonal
surface. We impose a feasibility constraint on a motion
meaning that a motion requires a connected substrate of
other cubes (also called a configuration) and has to obey
connectivity constraints as well as collision constraints.
Furthermore, a configuration C is composed of N cubes
and is a subset of the representable space Z3N .
A heterogeneous configuration is represented as a set of

cubes in which each cube is assigned an origin x ∈ R3,

Fig. 1. Example of a heterogeneous configuration com-
prised of colored unit cubes.

an ID, and various properties. Without loss of generality,
we represent the heterogeneity of cubes with different
colors. Path planning as shown in Section 4 relies on this
representation of a configuration as a set of cubes. For
analytic purposes and foremost for hole detection we use
another representation of the configuration - the connec-
tivity graph.

Definition 1. The connectivity graph GC = (V,E) of a
configuration C is an undirected graph represented by
a node set V and and edge set E. V is a finite set of
nodes corresponding to the cubes in the configuration,
i.e., V = {1 . . . N} where N is the total number of cubes.
E ⊆ V ×V is the edge set of the graph and contains edges
for any two cubes ci, cj ,∀i 6= j for which dist(ci, cj) = 1
as measured by the Manhattan distance (i.e., cubes are
connected if they share a common face).

Generally, a connectivity graph can be computed for
any set of cubes. It is noteworthy that not just the
configuration itself can be represented as a set of cubes
but also, for example, the hull of a configuration (see
Section 4), which is a set of empty lattice positions.
Therefore, one can represent sets of empty lattice positions
as a connectivity graph (which will become important in
Section 4 and Section 5).

3.1 Assumptions

Before we describe the reconfiguration algorithm in Sec-
tion 4, we clarify the assumptions made for this work.

• The initial configuration CI and the target configura-
tion CT are known.

• CI and CT contain the same number of modules of
each property.

• Without loss of generality we assume that there exists
an overlap between CI and CT of exactly one cube.
This cube matches the properties of its position (i.e.,
it is already at its target position).

• The configuration is initially enclosure-free and re-
mains enclosure-free throughout the reconfiguration.
As shown in Pickem and Egerstedt (2012), this as-
sumption is required to ensure that the planning
space N (C) (see Section 4) remains connected.

• The overlap of initial and target configuration is hole-
free. This assumption is required to show complete-
ness of the reconfiguration algorithm in Section 5.

Holes and enclosures are unreachable positions in the
target and current configuration, respectively, and are
formally defined in Section 5. They will become important
in showing completeness of the reconfiguration algorithm.
It is also noteworthy that for every enclosure-free reconfig-
uration sequence there also exists a sequence that allows
enclosures. In this sense, the requirement of enclosure-
freedom is not a limitation to the presented reconfiguration
approach.

3.2 Constraints

We impose a series of constraints on our system.

• Collision: Motions of cubes are only allowed if they
do not cause collisions between cubes.
• Connectivity : The configuration of cubes needs to

remain connected at all times meaning that the
connectivity graph can only contain one connected
component.
• Mobility : Cubes are only allowed to perform sliding

and corner motions.
• Permanence: Once a cube reaches a position in the

target configuration, it remains fixed to that position
until the end of the reconfiguration sequence.

As we shall see in Section 5, permanence is used to
show completeness of the heterogeneous reconfiguration
algorithm. Before we define permanence, we introduce the
notion of time for the presented reconfiguration algorithm.
The current configuration at the initial time t0 is C (t0) =
CI . A time step 4t is the time required to move a cube
ci ∈ C from its current position to a target position ri ∈
CT . The current time t is therefore defined as t = t0+n4t,
where n is the number of cubes moved to their respective
target position. In this sense, the final time tf is the time at
which every cube ci ∈ C has been moved to its respective
ri ∈ CT , i.e., tf = t0+(N−1)4t, where N is the number of
cubes in the configuration C . Note that only N − 1 cubes
have to be moved because of the initial overlap of size one.
In other words tf = {t|ci(t) = ri,∀ci ∈ C , ri ∈ CT }.
Definition 2. Permanence requires that once a module
reaches its target position ri ∈ CT it remains fixed to
that position until the target configuration has been fully
assembled, i.e., until C = CT . More formally, we define
permanence as

ci(t) = ri ∈ CT ,∀t ∈ [t, tf]

where t is the current time step and tf is the final time.

As we will show in Section 5, permanence implies that once
a hole is created it cannot be undone.

4. RECONFIGURATION PLANNING

Accomplishing a heterogeneous reconfiguration requires to
move all cubes in the initial configuration CI to matching
positions in the target configuration CT . A matching posi-
tion ri ∈ CT must have the same properties as the cube ci
that will occupy it. Note that the permanence constraint
implies that we only need to move cubes ci ∈ CI that are
not already at their matching target positions. Because we
assume an initial overlap of one cube, N −1 cubes have to
be moved to their respective target positions. The connec-
tivity constraint prohibits moving cubes whose movement

would disconnect the configuration. These cubes can be
identified in the connectivity graph of the configuration as
articulation points or cut vertices. Note that the connec-
tivity constraint implies that the configuration can only
contain one connected component. To guarantee connec-
tivity, we exclude articulation points from the movable set,
which is the set of all cubes that are movable at any given
time in the reconfiguration process.

Definition 3. The movable set M is the set of all cubes
that can be moved without violating the collision, connec-
tivity, and permanence constraints during the current time
step:

M = {ci|ci ∈ C \ (A(C) ∩ I ∩ CT)}
Here, A(C) is the set of all articulation points of the
current configuration and I is the set of immobile cubes
(cubes with six neighbors).

Note that M ⊂ C and that we consider all ci ∈ CT as
immobile because of permanence (an example of a movable
set is shown in Fig. 2(b)). Moving a cube from CI to
CT requires an assignment. But before the algorithm can
compute a valid assignment (see Algorithm 1, line 5), we
have to define which positions of CT can be reached within
one time step of the current time and configuration, i.e.,
which positions ri ∈ CT are adjacent to C . Therefore we
introduce the hull N (C) and the target successor set R.

Definition 4. The hull N (C) is defined as all positions
adjacent to C :

N (C) = {cj |dist(ci, cj) = 1, ci ∈ C , cj ∈ Z3 \ C }
Here, ci is a cube in the current configuration and cj is an
empty lattice position.

Note that a hull N (S) can be computed for any set
of cubes S. The hull N (C) in particular represents all
positions adjacent to the current configuration and is used
as the planning space for the path planner. It also plays an
important role in defining which positions can be reached
from the current configuration C . The target successor set
R incorporates N (C) as follows.

Definition 5. The target successor set R is the set of all
positions adjacent to the current configuration that are
also in the target configuration, or more formally:

R = (CT ∩N (C))

Note that R is the set of all target positions that can be
reached within one time step (an example is shown in Fig.
2(c)). Also note that positions in the target configuration
ri ∈ R have properties just like actual cubes ci ∈ C .
Empty positions mi ∈ N (C), however, do not have
any properties (beyond unit dimensions), i.e., any module
can occupy a position in N (C), which is crucial for
path planning. The planning approach presented so far is
identical to the one presented in Pickem and Egerstedt
(2012) for homogeneous systems. The main difference,
however, lies in the assignment of a cube ci ∈ M to
a target position ri ∈ R. Whereas for homogeneous
systems, any cube in ci ∈M can be moved to any target
position ri ∈ R, a heterogeneous system requires matching
properties (i.e., pk(ci) = pk(rj) ∀pk ∈ P where P is the
set of all properties defined for cubes).
Before the notion of valid assignment is introduced, we
define two sets. The set of positions in R that would create
a hole if occupied at the current time step is denoted as Ht.

(a) Initial configuration (transparent), tar-
get configuration (wireframe), and overlap-
ping nodes (opaque).

(b) Movable nodes (opaque) as part of the
initial configuration (transparent).

(c) Immediate target successor positions
(opaque) as neighboring positions of the ini-
tial configuration (transparent).

Fig. 2. Representation of the initial and target configuration, movable, and immediate target successor set. For clarity,
we show a homogeneous case here. The concepts are the same for the heterogeneous case.

The set of positions in N (C) that would create enclosures
if occupied at the current time step is denoted as Et (holes
and enclosures are formally defined in Section 5). Based on
these sets, a valid assignment is defined as follows.

Definition 6. A valid assignment a is given by a set {ci, rj}
with ci ∈M and rj ∈ R where the properties of ci and rj
have to match. More formally an assignment a is defined
as:

a = {ci, rj}, with ci ∈M , rj ∈ R \ (Ht ∪ Et)

and pk(ci) = pk(rj),∀pk ∈ P

As shown in Pickem and Egerstedt (2012), by construction
M and R are nonempty unless the target configuration
has been assembled, i.e., C = CT . For homogeneous
reconfiguration, there exists a module that can be moved
from its initial to its target position at any time. For
heterogeneous self-reconfiguration, this is not generally
true even for nonempty sets M and R. If no cube ci ∈
M matches the properties of an ri ∈ R then no valid
assignment can be found. An example is shown in Fig. 3
where M contains only red cubes and R only yellow ones.
To avoid deadlocks created by a lack of valid assignments,
an algorithm called assignment resolution is used (see
Algorithm 1, line 10).

Definition 7. Assignment resolution computes a valid as-
signment as follows.

a = {mi, ti}
with ti = rand(N (C) \ (R ∪N (R) ∪ Et))

Instead of moving a cube mi ∈M to a target position, it
is moved to a random temporary position ti in the hull of
the current configuration which is neither a target position
nor in the neighborhood of a target position. Additionally,
mi can not be picked such that its occupation will create
an enclosure.

The basic idea of assignment resolution is that as long as
cubes mi ∈M are moved randomly to positions given by
the rule in Def. 7, assignment resolution will eventually
make a cube movable whose properties match those of a
position ri ∈ R. At that point, a valid assignment can
be computed and the assembly of the target configuration
can continue. Note that assignment resolution will never
obstruct the assembly of CT because it will never move
a cube to a target position nor into the neighborhood of
a target position. Therefore, it will never create a hole.

Fig. 3. Example of a reconfiguration sequence using as-
signment resolution. Opaque cubes represent the cur-
rent configuration, transparent cubes the unoccupied
target positions. The goal is to move the line config-
uration three steps to the right. Shown is only one
assignment resolution step, in which the red cube has
to be moved out of the way before the reconfiguration
can continue.

Another consequence of assignment resolution is that a
target position will never be occupied by a non-matching
cube.

Theorem 1. Assignment resolution will enable the compu-
tation of a valid assignment with probability 1.

Proof. This result is shown in two steps. First we show
that a deterministic sequence of moves can reconfigure
all cubes that are not at their target position into an
intermediate configuration in which all cubes are movable
and a valid assignment can be computed. Then we show
that the random cube motions of assignment resolution
will assemble such a configuration with probability 1.

(1) Starting in any nonterminal configuration, an inter-
mediate configuration in which a valid assignment can
be computed is reachable. We pick the intermediate
configuration to be a double line, which consists of
two connected linear one-dimensional chains of cubes
(such as the one shown in Fig. 3). Any configuration
can be reconfigured into a double line (see Pickem and
Egerstedt (2012)). and in such a configuration, every
cube is movable without disconnecting the configura-
tion. Therefore, the movable set contains every cube

Algorithm 1 Heterogeneous Reconfiguration

Require: input CI , CT

Ensure: |CI | = |CT |
1: Set C = CI

2: while C 6= CT do
3: Compute M
4: Compute R
5: Compute assignment a = {ci, ri}
6: Compute planning space N (C)
7: while !isValid(a) do
8: Remove ri from R
9: if isEmpty(R) then

10: a = assignResolution(M , N (C),R, Et)
11: break
12: else
13: Recompute a
14: end if
15: end while
16: p = planPath(a, N (C))
17: executePath(p)
18: end while

ci ∈ C \ CT , i.e., every cube that is not at a target
position. Because R is nonempty unless C = CT

(see Pickem and Egerstedt (2012)), at least one cube
mi ∈ M matches a position rj ∈ R and a valid
assignment can be found.

(2) Using only random cubes motions, the probability of
reaching a double line configuration is approaches 1 as
t→∞. That is because N cubes can only be arranged
in a finite number of configurations assuming that at
least one cube is fixed (see assumptions made in Sec-
tion 3). Therefore, we can interpret a reconfiguration
process as a finite state machine, in which each state
corresponds to a configuration and each transition to
a motion of a cube. In such a state machine the proba-
bility of reaching a double line configuration from any
state (i.e. configuration) is non-zero. Therefore, the
random cube motions of assignment resolution will
reconfigure the current configuration into a double
line as t → ∞, in which a valid assignment can be
computed.

Note that in most practical cases a double line will not
actually be assembled but a assignment resolution will
enable the computation of a valid assignment before. The
reconfiguration process can then proceeds towards assem-
bling the target configuration. Referring to Fig. 3, the only
reachable position in the first frame is a yellow position.
Yet the only movable cube is red. Therefore, assignment
resolution has to be applied to the red cube to move it to
a random position. Once a yellow cube becomes movable
the reconfiguration can proceed to assemble CT .
After a valid assignment has been computed, the algorithm
plans a path from mi to ri through planning space N (C).
A path is the concatenation of primitive sliding and corner
motions that move cube mi from its current position to its
target position ri (or to an intermediate position in case
of assignment resolution). The path planner obeys colli-
sion, connectivity, and mobility constraints. The complete
algorithm is outlined as Algorithm 1.

(a) Connectivity graph of config-
uration C (filled nodes) and hull
N (C) (hollow nodes) before a
hole is created.

H

∂ H

(b) Connectivity graph of config-
uration C (filled nodes) and hull
N (C) (hollow nodes) after a hole
is created. ∂H is indicated by
green nodes.

Fig. 4. Hole detection using connectivity graphs of the
configuration C and the planning space N (C).

5. HOLE DETECTION

The heterogeneous self-reconfiguration algorithm shown in
Section 4 potentially creates holes in the target config-
uration. A hole is a position ri ∈ CT that can not be
reached by any cube ci ∈ (C \CT) at the current time t or
any future time because of permanence. As we will show,
holes obstruct the completion of a reconfiguration because
they create permanent deadlocks and must therefore be
avoided at all cost. The algorithm presented in this section
provably detects holes and can invalidate assignments that
would create either. Before we present the algorithm, we
first define what a hole and its boundary are.

Definition 8. A hole H is an unoccupied target position
(or a set of adjacent unoccupied target positions) ci ∈ CT

that is surrounded on all adjacent sides by occupied target
positions such that no path exists between any cube ci ∈
C \CT and any position in the hole. More formally, a hole
H is defined as

H ∈ CT \ C s.t. ∀h ∈ H and ci ∈ C \ CT ∃! path(ci, hi)

The creation of a hole in a two-dimensional case is shown in
Fig. 4, which illustrates that the existence of a hole implies
that the planning space N (C) becomes disconnected. Fig.
4 also shows the boundary of a hole ∂H.

Definition 9. The boundary of a hole ∂H is defined as
∂h ∈ ∂H ∀∂h ∈ CT if dist(∂h,H) = 1. In other words,
the boundary of a hole is defined as all occupied target
positions that are adjacent to any position hi ∈ H.

Since bothH ⊂ CT and ∂H ⊂ CT , once a hole is created, it
can not be resolved because of the permanence constraint.
Hole-like structures can also occur in the current config-
uration because of the assignment resolution algorithm.
We call these temporary holes enclosures and they are
also detected by the hole detection algorithm (Algorithm
2). However, permanence does not apply to these enclo-
sures and their boundary. Therefore, they do not obstruct
the successful completion of a reconfiguration sequence.
Nonetheless, assignments that create enclosures are not
allowed because they would disconnect the planning space
N (C). A connected N (C), however, is required for prov-
ing the detectability of holes (see Theorem 4). To show the
importance of hole avoidance, we show that holes obstruct
the completion of the reconfiguration process.

Theorem 2. A hole obstructs the successful completion of
a heterogeneous reconfiguration.

Proof. The proof follows directly from the definition of a
hole, where H ∈ CT , i.e. H contains unoccupied target
positions. By definition, ∂H ∈ CT , which means that
because of the permanence constraint none of the cubes
pi ∈ ∂H will be moved until the reconfiguration process is
completed. However, the reconfiguration process will never
terminate because it contains a hole H and its boundary
∂H that blocks the occupation of empty positions hi ∈
H ⊂ CT . Therefore, a reconfiguration sequence can never
be completed when a hole is exists.

Theorem 2 shows that a successful reconfiguration cannot
contain any holes. In general, however, we cannot con-
clude that the absence of holes implies a successful recon-
figuration. In a heterogeneous self-reconfigurable system,
deadlocks can happen that prevent the completion of a
reconfiguration. A deadlock occurs when no module in M
matches the properties of a position in R. Without any
further measures, the algorithm would get stuck in such a
case. However, with the assignment resolution algorithm
introduced in Section 4 we can resolve the issue of dead-
locks and guarantee successful heterogeneous reconfigura-
tion.

Theorem 3. Using the assignment resolution algorithm,
the absence of holes guarantees a successful reconfigura-
tion.

Proof. As shown in Theorem 1, assignment resolution
ensures that a valid assignment can be found as long as the
reconfiguration has not been completed (because M and
R are nonempty as long as C 6= CT , as shown in Pickem
and Egerstedt (2012)). A valid assignment guarantees
that progress is made towards assembling CT , i.e., the
number of cubes occupying positions ri ∈ CT is strictly
monotonically increasing in time. This property follows
from Pickem and Egerstedt (2012), where we showed for
homogeneous systems that a valid assignment ensures that
a path can be computed from ci ∈ M to ri ∈ R. For
heterogeneous systems, this assertion holds as long as holes
and enclosures are avoided in the reconfiguration process.
Given valid assignments, the only way a heterogeneous
reconfiguration can fail is if unreachable positions occur in
the target configuration. An unreachable position in CT

will only occur if a hole is created because by definition,
the existence of a hole implies that there does not exist a
path from any ci ∈ C \∂H to a position hi ∈ H. Therefore,
the absence of holes guarantees that there exists a path to
any ri ∈ R at the current time step (if a matching cube
is movable) and to any rj ∈ CT for all future time steps
t ≤ tf . Given that we can always find a valid assignment
using assignment resolution and a valid assignment means
progress towards assembling CT is made in the absence of
holes, we can guarantee that CT is indeed assembled.

The above proof relies on the ability to detect and there-
fore avoid holes. As long as CI is a hole and enclosure-
free initial configuration, the reconfiguration algorithm
(Algorithm 1) will guarantee hole and enclosure-freedom
throughout the configuration because Algorithm 2 will de-
tect any hole and enclosure in the reconfiguration sequence
and invalidate assignments that create either. The hole

Algorithm 2 Hole Detection

Require: input a = {ci, ri}, C
Ensure: ri ∈ GC and ri ∈ R

1: Compute N (C)
2: Compute GC of N (C)
3: Compute L of GC

4: if |λi = 0| > 1,∀λ ∈ eig(L) then
5: Return true
6: else
7: Remove ri from N (C)
8: Update ci’s origin to ri (in C)
9: Recompute N (C), GC , and L

10: if |λi = 0| > 1,∀λ ∈ eig(L) then
11: Return true
12: else
13: Return false
14: end if
15: end if

detection algorithm computes the number of connected
components of the connectivity graph of the hull N , which
is initially connected (because we know that C is hole and
enclosure-free). After computing the hull N , its connectiv-
ity graph GC , and the associated graph Laplacian L, the
algorithm determines the eigenvalues of L. The number
of zero eigenvalues indicates the number of connected
components (according to Mesbahi and Egerstedt (2010)).
If GC is disconnected to begin with, the algorithm will
report the detection of a hole or an enclosure for any
assignment and will essentially stop the reconfiguration.
Therefore, it is crucial that hole and enclosure-freedom is
maintained throughout the reconfiguration.
If GC is connected, Algorithm 2 will proceed to determine
if the given assignment a (i.e., the movement of cube ci to
position ri) will create a hole or an enclosure. The algo-
rithm executes a hypothetic move of cube ci to position ri
(lines 7 to 9) and recomputes N , GC and L as well as the
multiplicity of zero eigenvalues of L. If more than one zero
eigenvalue is found, the algorithm concludes that the last
motion has created a hole or an enclosure. Differentiating
a hole and an enclosure can be done using the definition of
a hole. If hi ∈ CT ∀hi ∈ (H∪∂H) then a hole has been de-
tected, otherwise an enclosure is reported. Essentially, the
algorithm checks whether the hole and its boundary are
in the target configuration or not. The following theorem
shows that this algorithm indeed guarantees the detection
of holes and enclosures.

Theorem 4. The proposed hole detection algorithm (Algo-
rithm 2) will detect a hole (or an enclosure) if and only if
there exists a hole (or enclosure).

Proof. The proof is based on the assumption that the cur-
rent configuration C is hole and enclosure-free. Therefore,
the connectivity graph GC of N is connected.

• Necessity (D → H): The detection of a hole is based
on the eigenvalues λi of the graph Laplacian L,
where the multiplicity of λi = 0 (the number of
zero eigenvalues) indicates the number of connected
components of the graph. Therefore, we can conclude
that GC is disconnected if the multiplicity of λi = 0 is
larger than 1. By construction, N is connected, which
means that the occurrence of two or more connected

Table 1. Reconfiguration planning results for
reconfigurations from random to box configu-

rations

Size Steps Detected Holes # of Resolutions

10 33 0 3

20 69 0 1

30 107 0 0

40 150 0 0

50 233 0 1

components implies the existence of either a hole or
an enclosure.
• Sufficiency (H → D): Starting with an initially con-

nected N and using the fact that a hole or an
enclosure increases the number of connected compo-
nents of GC , the hole-detection problem is reduced
to determining how many connected components GC

contains. If the configuration C contains a hole or an
enclosure, L has more than one zero eigenvalue, and
we immediately detect the hole or the enclosure.

Given that the current configuration C is hole and
enclosure-free we can guarantee that C will be hole and
enclosure-free after moving the current cube according to
assignment a because the hole detection algorithm only
allows valid assignments. Hole and enclosure freedom of
the entire reconfiguration sequence follow by induction.

6. RESULTS AND CONCLUSIONS

This section shows numerical results based on reconfig-
uration sequences from random three-dimensional initial
configurations to box configurations (see Table 6) as well
as a full reconfiguration sequence from a random configu-
ration to a layered pyramid (Fig. 5). In Table 6, the field
Size refers to the size of the configurations, Detected Holes
reports the number of holes and enclosures detected during
reconfiguration, and # of Resolutions denotes the number
of assignment resolutions during each reconfiguration. The
results indicate that the number of assignment resolution
steps is larger for small configurations and decreases as the
size of the configuration increases. This can be attributed
to the larger number of movable and reachable cubes in
larger configurations, which makes it very likely that a
valid assignment can be found.
The complete absence of holes and enclosures is an ar-
tifact of this specific set of randomly generated problem
instances. Note, however, that the occurrence of holes and
enclosures is very unlikely in general and requires multiple
consecutive assignment or assignment resolution steps to
arrange cubes in specific shapes. Nonetheless, holes and en-
closures are theoretically possible and need to be avoided
in a complete heterogeneous self-reconfiguration algorithm
as we have shown in this paper.

REFERENCES

Balch, T. and Parker, L.E. (eds.) (2002). Robot Teams:
From Diversity to Polymorphism. A. K. Peters, Ltd.,
Natick, MA, USA.

Butler, Z., Murata, S., and Rus, D. (2002). Distributed
replication algorithms for self-reconfiguring modular
robots. In In Proceedings of Distributed Autonomous
Robotic Systems (DARS).

Fig. 5. Example of a heterogeneous reconfiguration from a
random three-dimensional configuration to a layered
pyramid.

Fitch, R., Butler, Z., and Rus, D. (2003). Reconfiguration
planning for heterogeneous self-reconfiguring robots. In
Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference
on, volume 3, 2460 – 2467.

Fitch, R., Butler, Z., and Rus, D. (2007). In-place dis-
tributed heterogeneous reconfiguration planning. In
R. Alami, R. Chatila, and H. Asama (eds.), Distributed
Autonomous Robotic Systems 6, 159–168. Springer
Japan.

Gilpin, K. and Rus, D. (2010). Modular robot systems.
IEEE Robot. Automat. Mag., 17(3), 38–55.

Mesbahi, M. and Egerstedt, M. (2010). Graph Theoretic
Methods in Multiagent Networks. Princeton University
Press.

Pickem, D. and Egerstedt, M. (2012). Self-reconfiguration
using graph grammars for modular robotics. IFAC
Conference on Analysis and Design of Hybrid Systems,
Eindhoven, Netherlands.

Rus, D. and Vona, M. (2001). Crystalline robots: Self-
reconfiguration with compressible unit modules. Au-
tonomous Robots, 10(1), 107–124.

Vassilvitskii, S., Yim, M., and Suh, J. (2002). A complete,
local and parallel reconfiguration algorithm for cube
style modular robots. In Robotics and Automation,
2002. Proceedings. ICRA ’02. IEEE International Con-
ference on, volume 1, 117 – 122 vol.1.

Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M.,
Lipson, H., Klavins, E., and Chirikjian, G.S. (2007).
Modular self-reconfigurable robot systems – challenges
and opportunities for the future. IEEE Robotics and
Autonomation Magazine, March, 43–53.

