Current Projects


Safe Open-Loop Motion Strategies for Handling Communication Failures in Multi-Robot Systems

This project aims to formulate a motion strategy that allows  robots to safely handle critical communication failures in multi-robot systems where a central decision maker is specifying the movement of each individual robot. For each robot, the proposed algorithm computes a time horizon over which collisions with other robots are guaranteed not to occur. These safe time horizons are included in the commands being […]

Blueberry planting in Tifton, GA.

Precision Agriculture

Agricultural automation presents challenges typically encountered in the realm of cyber-physical systems, such as incomplete information (plant health indicators), external disturbances (weather), limited control authority (fertilizers cannot make a plant mature arbitrarily fast), and a combination of discrete events and continuous plant dynamics. In this project, we focus on the particular problem of optimal pesticide spray […]


Game-theoretic Self-reconfiguration

This project aims to  formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that […]


Musical Abstractions for Multi-Robot Control

How one single operator should influence the performance of a large group of robots is not a simple question in that it depends on various factors, including the size and composition of the team as well as the objective task to be performed. This work introduces music theory as a new approach for multi-robot control […]


Trust in Human-Robot Teams

Trust- based coordination occurs when a team of robots and possibly humans have to work together to achieve some goal, but each robot (and/or human) may not trust all of the other robots (and/or humans). If a robot doesn’t trust one of its neighbors, it may not want to heavily weight the information obtained from […]



Multi-robotic testbeds are an integral part of multi-agent research, yet they are expensive to develop and operate. This in turn makes them unaffordable for most but a select few researchers at well-endowed universities, slows the rate of progress of multi-agent research, and limits the number of educational multi-robot tools available to students. The goal of […]


Safe Swarm Robotics

When designing coordinated controllers for teams of mobile robots, the primary control objective tends to drive the behavior of the team so as to realize tasks such as achieving and maintaining formations, covering areas, or collective transport. Safety, in terms of collision avoidance is added as a secondary controller to override the controller when collision […]

The GRITSBot in all its glory


The goal of the GRITSBot project is to make multi-agent experiments more accessible to the research community at large as well as to students of all age groups (highschool, undergraduate education, as well as graduate education). In a further step, we intend to open up a show testbed to the general public. Revision 1 of […]


Robust Multi-Agent Networks

The objective of this research is to develop decentralized methods for achieving robustness in multi-agent networks through self-organization. Multi-agent networks typically consist of numerous components that interact with each other to achieve some collaborative tasks. In many applications, the network may face functional or structural challenges such as failures, noise, or malicious attacks, to name a few. Under such perturbations, a desirable […]

Robotic Mixing Using Braids

Robotic Mixing Using Braids

We approach the problem of having robots mix, or interact with each other consistently in the same space, by borrowing concepts from algebraic topology, namely from the Braid Group.

Three robots performing optimal coverage of a specified time-varying density function (shown in red).

Control of Multi-Agent Systems Using Time-Varying Density Functions

In this project, optimal coverage ideas are used to control a multi-agent system. In optimal coverage, we are concerned with finding the algorithm that will drive the agents to position themselves in ‘best’ locations, when given a certain density function that represents spatial ‘importance’. For example, this density function may be a probability density function of […]


Heterogeneous Self-Reconfiguration

This project develops a novel approach for heterogeneous self-reconfiguration of a modular robot comprised of heterogeneous cubic modules. We allow an arbitrary number of modules and module classes and show that the proposed self-reconfiguration algorithm can guarantee completion of heterogeneous self-reconfiguration sequences by avoiding so-called hole obstructions. We introduce a hole-detection algorithm to avoid creating […]


Mapping Global Network Computations to Local Rules

In networked systems, a designer often has a higher level goal in mind which he wants to achieve with local rules. Examples of possible goals are rendezvous and formation control. This project aims to find general methods by which arbitrary global behaviors can be mapped on to local network interactions. Initial work has shown that […]