
The Robotarium: An open, remote-access, multi-robot laboratory

Daniel Pickem1, Eric Squires2 and Magnus Egerstedt3

Abstract— Multi-robotic testbeds are an integral part of
multi-agent research, yet they are expensive to develop and
operate, which obstructs access. This in turn makes them
unaffordable for most but a select few researchers at well-
endowed universities, slows the rate of progress of multi-agent
research, and limits the number of educational multi-robot
tools available to students. In this paper we propose a shared,
remotely accessible multi-robot testbed - the Robotarium - that
aims at remedying these issues and enabling researchers to
remotely access a state-of-the-art multi-robot test facility. The
Robotarium hosts custom-designed miniature robots that are
able to recharge their batteries autonomously, enables users to
remotely upload code to the robots, and allows users to run
their multi-robot experiments remotely.

I. INTRODUCTION

Multi-robot research has seen an almost explosive growth
during the last decade, with a number of coordinated control
algorithms being developed for tasks ranging from environ-
mental monitoring (e.g. [7], [9], [36]) to collective material
handling (e.g. [28]). This growth has been driven by a
combination of algorithmic advances and increased hardware
miniaturization and cost reduction. However, despite the
reduction in cost, it is still a prohibitively costly proposition
to go from theory and simulation, via a few robots, all the
way to a truly deployed large-scale robot system, and there
are only a handful of laboratories around the world that can
field massive numbers of robots in the air, under water, or
on the ground, e.g., [17], [23], [11], [33], [34].

To advance multi-robot research further, actual deploy-
ment is crucial since it is increasingly difficult to faithfully
simulate all the issues associated with making multiple
robots perform coordinated tasks due to the increased task
complexity. To bridge this theory-practice gap, a typical
indoor multi-robot research lab is equipped with a number
of mobile robots, a camera system for indoor localization, as
well as additional supporting infrastructure (communications,
computation, software, safety, machining, etc.). The bare-
bones cost for such a lab can be as high as $250K1. As a

*This research was supported by Grant No. 1531195 from the U.S.
National Science Foundation.

1Daniel Pickem is a Ph.D. student in robotics at the
Georgia Institue of Technology, Atlanta, GA 30332, USA
daniel.pickem@gatech.edu

2Eric Squires is a Ph.D. student in Electrical and Computer Engi-
neering at the Georgia Institue of Technology, Atlanta, GA 30332, USA
esquires3@gatech.edu

3Magnus Egerstedt is with the School of Electrical and Computer
Engineering, Georgia Institue of Technology, Atlanta, GA 30332, USA
magnus@gatech.edu

1This estimate is based on a typical setup using Khepera wheeled
ground robots, an OptiTrack motion capture system, and the required
communications and computing infrastructure.

consequence, research in multi-agent robotics has largely be-
come a resource competition as opposed to an ideas compe-
tition and the high barrier to entry excludes many researchers
from participating. This paper describes the Robotarium – an
open, remote-access multi-robot system explicitly designed
to address these issues by providing access that is flexible
enough to allow for a number of different scientific questions
to be asked and different coordination algorithms to be tested.
And, although a number of elegant, remote-access robot
systems have been developed in the past ([17], [11], [31],
[4]), what makes the Robotarium different is its explicit
focus on supporting multi-robot research, as opposed to, say,
education or single-robot systems.

At its core, the Robotarium is a multi-robot laboratory,
where mobile robots can coordinate their behaviors in a
collaborative manner. And, during experiments, the Robo-
tarium provides users with both a live video stream of the
experiments as well as the scientific data produced by the
experiment. In this paper, we discuss how this multi-robot
laboratory is structured and, in particular, how the explicit
focus on being a remote-access research platform informs
the design. The outline of the paper is as follows. Section II
presents an overview of currently available testbeds in the
multi-robot and sensor networks domain. Section III dis-
cusses design considerations that guided the development of
the Robotarium prototype. Section IV explains the hardware
components of the current instantiation of the Robotarium in
detail while Section V presents the accompanying simulation
interface. Finally, Section VI shows an exemplary remote
experiment and Section VII concludes this paper.

II. BACKGROUND

Today’s robotics research relies increasingly on experi-
mental verification on robotic hardware. Yet, few shared
or remotely accessible testbeds are available to the general
research community. The Robotarium’s main goal is not to
provide another isolated testbed. Instead, it aims at relieving
researchers of the requirement to set up their own facilities
by providing a shared testbed on which time slots for usage
can be scheduled.

In the world of shared multi-agent testbeds, only a handful
are publicly available.2 One example of a shared robotic
platform is the PR2 Remote Lab at Brown University ([25],
[26], [31]), which makes a PR2 robot available for public use.
Instead of a single robot, the Robotarium aims at providing
access to a whole swarm of robots.

2A comprehensive overview of robotic and sensor network testbeds is
given in [15]

Fig. 1: System architecture overview. The current prototype includes components that are executed locally on Robotarium
infrastructure as well as user-facing components that run on remote user machines (APIs or simulation front end). Three
components interact directly with the robot hardware - tracking, wireless communication, and virtualization. The remaining
components handle user management, code verification and upload, as well as coordination of user data and testbed-generated
data.

Another remotely accessible multi-robot testbed designed
for research purposes was proposed in [23], [21]. Though
similar to the Robotarium in capabilities and infrastructure,
the used robots are significantly larger and more expensive
than the Robotarium robots. A similar testbed - although
designed for indoor and outdoor use - was developed at
Oklahoma State University. The cooperative multivehicle
testbed (COMET, [8]) also relies on a small number of
comparably expensive robots.

Remotely accessible testbeds have also proven useful in
educational contexts. For instance, Robotic Programming
Network (RPN) has been made available recently (see [4]).
Unlike the Robotarium, RPN relies mostly on simulation
(only a single Nao robot is available), but provides the
required infrastructure to control robots in an open, remote-
access fashion. Additionally, a remote robotics lab designed
for investigating localization and path planning is discussed
in [19]. The system allows simulation code to be developed
in a web-based user interface remotely and then run on
the hardware system. One disadvantage of this testbed is
that only a single robot is available for public use. Finally,
Robotnacka is a remotely accessible testbed aimed at young
students learning about programming and robotics [29]. It
is available 24/7 through an online interface, has automatic
charging through docking stations to create a maintenance-
free environment, and allows virtual robots to be used.
Though several physical robots are provided, extending this
system to a whole swarm of robots would require significant
amounts of space due to the robots large footprint. The
comparably small size of the Robotarium robots (see Section

IV) allows tens of robots to be used on a similarly sized
testbed.

Robotics testbeds have also emerged from the wireless
sensor network domain. The Mobile Emulab, for example,
closely resembles the Robotarium in that it provides a shared,
remotely accessible multi-agent testbed with mobile nodes
[17]. Mobile Emulab’s main focus, however, lies on sensor
networks and evaluating mobility-related network protocols.
Thus, it uses mobility only as a means to establish static
sensor network topologies and not as an inherent component
of dynamic multi-agent experiments. Unlike the Robotarium,
Mobile Emulab requires extensive resources - both in terms
of space requirements and financial resources.

Similar to Mobile Emulab, MiNT [10] and MiNT-m [11]
aim at reducing the space requirements to carry out multi-hop
wireless research. Their computing nodes are only capable of
limited motion because of their tethered nature. Each mobile
node is controlled in a centralized fashion and mobility
is used again to establish static sensor topologies. ORBIT,
another system whose main purpose is the evaluation of
wireless network protocols on sensor networks, emulates
motion of the nodes by dynamic binding of host computers
to wireless transceivers [32] and is also remotely accessible.
However, nodes are not truly mobile like the robots of the
Robotarium are.

A more recently developed testbed - CONET (Cooperating
Objects Network of Excellence, [12]) - combines wireless
sensor networks with mobile robotic platforms. The testbed
covers a total area of 500m2, houses six large mobile robots
and numerous stationary sensor nodes. Though remotely

accessible and impressive in its size and potential to host
a large number of robots, it requires significant resources
and is unlikely to be easily replicable like the Robotarium
is.

Two other shared testbeds in this context are the DeterLab
[24] and the PlanetLab [6], both of which are providing
capabilities to networking and security researchers. Although
successful in their domain, these testbeds cannot be used
for realistic cyber-physical systems research because of their
immobile computing nodes.

A number of isolated testbeds have been developed at
various institutions for a number of locomotion modalities.
Hovercraft vehicles have been used in testbeds at Caltech
[16] and the University of Illinois [35]. Testbeds at the
University of Pennsylvania rely on micro UAVs [22] as well
as a combination of ground and aerial vehicles [5], [14].
Similarly, the multi-vehicle testbed at MIT [18] and the
testbed at Brigham Young University [20] use a combination
of ground and aerial vehicles. Although their focus is an
entirely different one than the Robotarium’s, these testbeds
are in principle capable of remote operation.

Among the variety of inexpensive robotic testbeds that
have been presented in the literature one stands out above
all for the sheer scale - the Kilobot testbed. Although it
is a closed, non-shared testbed, it is used for large scale
experiments in 2D self-assembly and collective transport
with up to 1024 robots ([33], [34]). However, the Kilobot’s
locomotion modality (vibration motors) makes it less suitable
for a general purpose multi-robot testbed.

As part of the Robotarium’s mission of providing access
to multi-robot testbeds, the underlying robotic architecture
needs to fit as many applications as possible, which is
why the core of the testbed are wheeled miniature ground
robots. Specifically we use the GRITSBot, a miniature robot
we designed (see [30]) with similar capabilities to most
commonly used wheeled robotic platforms used in academia.
This robot architecture was chosen because a number of tasks
can be accomplished with generic wheeled ground robots,
for example vehicle routing [2], coverage control [3], or
collective exploration [27]. In this sense, the Robotarium’s
aims at providing not just an affordable but also flexible
testbed.

III. DESIGN CONSIDERATIONS

As a shared, remotely accessible, multi-robot facility, the
Robotarium’s main purpose is to lower the barrier of entrance
into multi-agent robotics. Similar to open-source software
that provides access to high quality software, the Robotarium
aims at providing universal access to state-of-the-art robotic
infrastructure and enabling fast prototyping of multi-agent
and swarm robotic algorithms. The Robotarium was designed
primarily as a research and educational tool that will function
as a gateway to higher STEM education on one hand and as
an accessible and capable research instrument on the other
hand. As such it is conceivable that a pervasive robotic
testbed such as the Robotarium will have to exhibit a subset

or all of the following high-level characteristics to fulfill its
intended use effectively.
• Simple and inexpensive replicability of the system -

both the testbed itself and the robots it contains.
• Intuitive interaction with and data collection from the

testbed
• Tight and seamless integration of the simulation work-

flow for algorithm prototyping and code execution on
the robots.

• Minimization of both cost and maintenance effort while
keeping the robots and testbed extensible.

• Built in safety and security measures to protect the
system from damage and misuse.

These desired high-level characteristics can be mapped
onto more specific constraints that inform the hardware
design as well as the software architecture - both low-level
controls on the robots as well as the coordinating server
applications. An overview of our current instantiation of
such a remote-access multi-robot testbed is shown in Fig.
1. Whereas this implementation already serves as a fully
functional small-scale prototype, a full-fledged Robotarium
implementation should include the following features.
• Large numbers of low-cost robots (on the order of

hundreds, see Section III-A)
• Convenience features to simplify maintenance of large

collectives of robots (see Section IV-B)
• Immersive user-experience through a fully remotely

accessible testbed with live video and data streaming
(see Section III-B)

• Public interface to allow users to schedule time on the
testbed (see Section III-C)

These design requirements can be categorized along three
dimensions, specifically robot design, user-experience, and
network design.

A. Robots

The Robotarium is meant to provide a well integrated, im-
mersive user experience with the smallest possible footprint,
and features that allow a large swarm to be maintained ef-
fortlessly. Such tight integration is only possible with custom
hardware. At the core of the Robotarium are therefore our
custom-designed robots - the GRITSBots (see [30]). These
miniature robots also ensure that the user community is not
limited to simulating robots locally, but is also able to deploy
its own low-cost, high-performance robots in conjunction
with the Robotarium robots - robots that already integrate
the remote-access aspect as a key characteristic of their
design. With ease of deployment in mind, we have designed
the GRITSBots that are low-cost, user-friendly, simple to
maintain, and tie in seamlessly with the Robotarium. The
design specifics of the robots are described in detail in
Section IV.

B. User Experience

Being an integrated research instrument, the user expe-
rience needs to be a vital part of the design of a testbed

such as the Robotarium. On the instrumentation side, the
Robotarium is equipped with cameras that provide a video
stream of the experiments, tracking cameras for localization,
and projectors for adding virtual robots to the Robotarium
floor that behave as if they were actual physical robots.
These virtual robots enable interaction with other virtual and
physical robots alike, where such interactions include both
collision and obstacles avoidance.

C. Network Design

The shared nature of the Robotarium requires precautions
to be taken against unauthorized access or abusive use of
the system. Access to such a testbed will therefore have to
be managed through a user verification and authentication
system (for example LDAP in combination with SSH).
Users will only be able to access the robots they have
been approved to use during the their assigned time slot.
These access control mechanisms ensure security for the
Robotarium by managing outside threats. Closely linked to
security is the safety aspect of the system, i.e. ensuring
that the system does not damage itself. Therefore a vital
component of the Robotarium’s software architecture will
have to be code verification to guarantee the avoidance
of damage to the hardware through faulty, corrupted, or
malicious code.

In addition to safety and security, network design has to
take delay-tolerance into account. It is conceivable that a
remotely accessible testbed has to accommodate user-testbed
interaction on different timescales and with different delay
tolerances. As shown in Fig. 1, two options for remote
access are enabled by the Robotarium. Delay-insensitive
applications and algorithms can remotely close the feedback
loop through the provided APIs. This method will prove
useful for quick prototyping and testing of algorithms that
do not require high update rates, large amounts of data to
be transfered, or a large number of robots to be involved.
This use-case would apply to largely autonomous robots
that require occasional user input to, for example, switch
operating modes.

Delay-sensitive applications that require closing the feed-
back loop locally can make use of the second track of remote
operation. User code is initially simulated in the provided
web front end. After initial user testing and verification, the
code is then uploaded to the Robotarium, undergoes formal
code verification, compilation, and upload to the robots,
which then execute it in a purely local fashion. Sample
applications include large-scale swarm experiments requiring
large numbers of robots or delay-critical applications that
require robots to react quickly to sensor information.

IV. PROTOTYPE DESIGN

In this section, we detail the current instantiation of the
Robotarium. It should be noted, already at this point, that the
Robotarium, by design, has to evolve over time in response
to user needs in order to provide an effective research
instrument as opposed to a static showcase. Fig. 1 shows
the currently implemented components of the Robotarium.

The testbed hardware, the tracking camera feedback loop,
wireless communications, the coordinating server applica-
tion, APIs, and simulation infrastructure are fully functional,
while initial versions of the code verification and compilation
modules are being developed. In this section, we will focus
on the robot design as well as the testbed setup.

A. Robot Design

The Robotarium leverages the GRITSBot, a miniature
robot that we introduced in [30]. It is an inexpensive differ-
ential drive miniature robot featuring a modular design that
allows hardware capabilities to be adapted easily to different
tasks. A key feature that makes the GRITSBot the basis
for the Robotarium is that it allows for a straightforward
transition from typical multi-robot systems because it closely
resembles popular platforms in capabilities and architecture
(such as the Khepera robots).

The robot’s main features include (i) high resolution and
accuracy locomotion through miniature stepper motors, (ii)
range and bearing measurements through infrared distance
sensing, (iii) global positioning system an overhead camera
system, and (iv) communication with a global host through
a wireless transceiver. This section briefly discusses these
features and summarizes design changes compared to the
first revision of the robot in [30].

1) Actuation: The actuation system of the GRITSBot is
based on two miniature stepper motors, whose main advan-
tage is the ease of acquiring accurate odometric information.
By replacing common wheel encoders with counting steps,
one obviates the need for motor speed estimation.

2) Processing: The main processor on the GRITSBot is
an ESP8266 microcontroller running at up to 160 MHz, fast
enough to handle wireless communication, pose estimation,
low-level control of the robot (including the nonlinear veloc-
ity and position controller), as well as high-level behaviors.
A second microcontroller on the motor board - an Atmega
88 - is responsible for motor control, i.e. ensuring the precise
timing required to run the stepper motors at speeds up to 8
rotations per second.

3) Communication: The main ESP8266 microcontroller
doubles as a WiFi transceiver supporting the IEEE 802.11
B/G/N standards. Unlike the wireless transceivers used on the
GRITSBot in [30], WiFi offers much higher bandwidth but
comes at the cost of higher power consumption (on average
150 mA). To offset the reduced battery life, we have doubled
battery capacity compared to [30]. The benefits of WiFi
however far outweigh its increased power consumption. WiFi
offers a reliable communication channel based on standard
UDP sockets and a single WiFi access points is able to
service hundreds of clients.

4) Sensing: The current sensor board of the GRITSBot
houses six infrared distance sensors with a range of up to 10
cm and can be equipped with a digital compass, gyroscope,
and an accelerometer. An additional battery voltage and
current sensor is located on the main board. The modular
architecture of the robot allows to easily extend or change
capabilities of the robot by replacing the sensor board with

(a) 3D model (b) Electronics of the robot (c) Prototype of robot shell

Fig. 2: The current revision of the GRITSBot.

a custom board or simply stacking a second sensor board on
top.

B. Testbed

The design of the GRITSBot allows a single user to easily
operate and maintain a large collective of robots through
built-in features such as (i) automatic sensor calibration, (ii)
automatic battery charging, (iii) wireless (re)programming,
and (iv) automated registration with the overhead tracking
system of the robots after powering them up. A future feature
that will significantly enhance multi-agent experiments is
local communication, which the robots sensor board supports
with its dual-use infrared distance sensors.

1) Camera System: The overhead tracking system is
based on standard webcams (currently Microsoft LifeCam
Studio HD cameras). The video stream is fed into an
OpenCV-based blob tracking algorithm recovering blob po-
sitions that are associated with individual robots. While x/y
position information is recovered through the blob tracking,
the orientation of the robots has to be estimated. Currently,
this orientation estimation is done through Kalman filtering
on the robots with observations being the position updates
supplied by the camera system.

2) Recharging: Arguably the most crucial component of
a self-sustaining and maintenance-free testbed is an auto-
matic recharging mechanism for the robots. The GRITSBot
has been designed for autonomous recharging through two
extending magnetic prongs that can connect to magnetic
charging strips built into the arena walls. This setup together
with global position control through the camera feedback
loop allows the GRITSBot to autonomously recharge its
battery.

3) Sensor Calibration: Since the IR distance sensors of
the robot only measure voltages that correspond to distances,
we have to establish a mapping between measured voltage
and distance. Variations in sensor quality require each robot
to be calibrated separately and possibly repeatedly through-
out its lifetime. Therefore, we have developed a calibration
tool that provides an automated mechanism for the calibra-
tion of the robots IR sensors. A detailed description of the
automated calibration feature can be found in [30].

4) Wireless Reprogramming: The main ESP8266 micro-
controller supports over-the-air programming (OTA), which
enables wireless reprogramming of individual robots, groups

of robots, or even reprogramming of the whole swarm in a
broadcast fashion. It is even possible for one robot to repro-
gram another, which offers an array of research challenges
in the area of wireless security, as well as evolutionary and
collaborative robotics.

V. SIMULATION

In addition to the hardware framework described in Sec-
tion IV, we have also developed a simulator for the Robo-
tarium that supports more rapid prototyping than hardware
alone can support. Simulator code can additionally be used
for real hardware experiments, reducing the turnaround time
for testing a prospective algorithm. More specifically, the
simulator incorporates the following:

• A communication framework that models network con-
gestion and bit rate errors. In addition, the simulation
provides a flexible format for specifying packets.

• Sensing including 6 IR sensors, battery current, and
battery voltage levels.

• Customizable global computer behavior for investigat-
ing the interaction of slow, global information with fast,
local information.

• Customizable robot behavior including a low level con-
troller, an obstacle avoidance controller, a neighborhood
manager, and a state estimator. Users are not limited to
a homogeneous implementation.

• A web-based graphical user interface that uses WebGL.
A screenshot of the simulator running a rendezvous
controller with 100 robots is shown in Fig. 3.

• Logging for every robot at every timestep of a simula-
tion returned in a simple data structure for analysis.

The implementation emphasizes usability by using a high-
level language (Python) and incorporating a modular frame-
work for specifying robot and global computer behavior.
Further, a library of behaviors for the global computer and
robot components are provided for users to choose from
rather than having to implement all custom components.

While usability is paramount in the simulation, reasonable
levels of fidelity have been achieved without sacrificing
runtime by writing a large portion of the simulation in

C/C++.3 In particular, the physics model incorporates simple
collisions and commanded wheel velocities, the communi-
cations model incorporates network congestion and bit rate
errors, and actuators are subject to failure as power levels
decrease. Thus, users can investigate for example the effects
of translating a unicycle model to a differential drive robot,
the effects of scale on communication capabilities, or the
effect of robots dropping out of a formation due to power
constraints.

Code written for the simulator should be all that is
necessary to conduct an experiment with the actual hardware.
In the current implementation, we achieve this through a
Python API which calls the simulation robot controller
for commanded wheel velocities. In the future, we intend
to translate simulation Python code into equivalent C/C++
code that can be run on the robots for a truly distributed
implementation. This can be achieved through the Python
Abstract Syntax Tree module, which will allow us to step
through logical chunks of user Python code and translate
it into equivalent C/C++ code. We will also give users
the option of verifying that their code compiles prior to
submitting their code for the hardware experiment.

Thus, users will be able to write their algorithms in a
high level language, test them in an easy-to-use simulation to
verify their algorithms, and submit them for actual hardware
experiments for a tight integrated environment.

VI. REMOTE EXPERIMENTS

As shown in Fig. 1, two options for remote interaction with
the Robotarium are available. On the one hand, a user can
control the robots through a Python or Matlab API. On the
other hand, code can be prototyped remotely in simulation
and then uploaded to the robots after a verification and code
rewriting step. These two options operate on different time
scales since the feedback loop is either closed remotely over
a network (in case of API usage) or locally on the robots (in
case of code upload). In this section we will explain both
methods in detail and present preliminary findings based on
a remote experiment using the API approach.

A. Remote Interaction with the Robotarium

Referring to Fig. 1, the left branch of the remote access
procedures is currently already fully implemented. Remote
users can log in to our system through a secure shell (SSH)
and execute their custom code through either a Python or
Matlab API. These APIs allow the user to send commands
(target positions, velocities, etc.) to the robot as well as
retrieve data from them (position updates, battery status,
etc.). Due to varying degrees of latency observed in closing
the feedback loop in experiments, it proved advisable to
run the code locally on the Robotarium machines. Hence,
Matlab code was uploaded to and executed on the testbed’s
computing infrastructure. In this local setup, it was possible
to close the velocity control feedback loop over the local

3Python written in C/C++ cannot be stepped through with a debugger
so pure python equivalent code has been provided for users to easily step
through otherwise compiled code.

WiFi network at sufficiently high update rates and minimal
delays.

The alternative option of code submission and automatic
formal verification opens up promising avenues for further
research in the area of remote-access testbeds. Currently
the process of code submission, verification, and upload to
the robots is done manually for reasons of security and
safety of the system. Full automation and integration of
code verification into the software framework requires the
guaranteed avoidance of damage to the robots even in the
face of potentially malicious code (for example through the
use of barrier functions to avoid undesirable states of the
system [1]). In its final implementation, a user provides
prototype Python code in the simulation web front end and
submits it to the Robotarium at which point the code will
be automatically verified (as mentioned in Section V). Since
at the current time, this is still a manual process as opposed
to a fully automated toolchain, usage of the API for remote
access is the more feasible option for rapid prototyping.

B. Circular Path Following Experiment

As a first remote-access experiment, a relatively small-
scale case was tested. The remote experiment shown in
this section is a circular path following controller based on
[13] with code remotely provided by Dr. Jorge Cortés from
UCSD. The provided Matlab implementation was uploaded
to the Robotarium machines and run locally. The algorithm
controlled a team of three robots (see Fig. 4 for snapshots
of the experiment). Minor modifications to the code had to
be made to update positions through the Robotarium back
end instead of through Matlab simulation. The control inputs
(namely linear and rotational velocities) were computed
according to the following control law.

vi =
k1θi,des

2π

ωi =
v

r
+ k2r [(xi − cx)cos(θi) + (yi − cy)sin(θi)]

where c = {cx, cy} are the coordinates of the center of
the circle and r its radius. The constants k1 and k2 are
appropriately chosen gain values (in this experiment ki =
1.0). The desired heading of robot i is computed according
to

θi,des = min
j∈Ni

atan2 (yj − cy, xj − cx)− θi,rel

where Ni is the current neighborhood of robot i and θi,rel =
atan2 (yi − cy, xi − cx) is its relative angle.

VII. CONCLUSION

In this paper, we have presented a remotely accessi-
ble, shared testbed that makes state-of-the-art multi-robotic
systems available to a large audience of researchers and
students. The Robotarium presents an affordable and flexible
testbed that can be cheaply replicated and is easily extensible.
These features also guided the design of the robot at the core
of the Robotarium - the GRITSBot. This miniature low-cost
robot was designed around the idea of remote access and

Fig. 3: A screenshot of the simulation web interface executing a rendezvous controller.

Fig. 4: Snapshots of the circular path following controller executed on a team of three robots.

with a focus on ease of use, ease of maintainability, and
extensibility through a modular architecture.

Much like the GRITSBot itself, the Robotarium aims to
provide intuitive interaction and high usability through re-
mote access. Matlab and Python APIs allow users to remotely
control the robots while a web-based simulator enables rapid
prototyping of multi-agent algorithms including code transfer
and execution on the robots. The Robotarium’s main goal
is to provide both a model and a physical instantiation of a
remotely accessible multi-robot facility and as a result relieve
researchers from having to set up and maintain their own
costly testbeds. Through a remotely accessible swarm of low-
cost miniature robots together with an almost maintenance-
free testbed, cost will no longer be a limiting factor in multi-
agent research.

ACKNOWLEDGEMENT

We would like to thank Dr. Jorge Cortés and his team from
the University of California San Diego for the submission of
the circular path following code shown in Section VI.

REFERENCES

[1] A.D. Ames, J.W. Grizzle, and P. Tabuada. Control barrier function
based quadratic programs with application to adaptive cruise control.
In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference
on, pages 6271–6278, Dec 2014.

[2] A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for
multiple vehicles with no explicit communications. Automatic Control,
IEEE Transactions on, 54(10):2302–2317, 2009.

[3] G. Arslan, J.R. Marden, and J.S. Shamma. Autonomous vehicle-target
assignment: A game-theoretical formulation. Journal of Dynamic
Systems, Measurement, and Control, 129(5):584–596, 2007.

[4] G.A. Casan, E. Cervera, A.A. Moughlbay, J. Alemany, and P. Martinet.
Ros-based online robot programming for remote education and train-
ing. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 6101–6106, 2015.

[5] L. Chaimowicz, B. Grocholsky, J.F. Keller, V. Kumar, and C.J. Taylor.
Experiments in multirobot air-ground coordination. In Robotics
and Automation (ICRA), 2004 IEEE International Conference on,
volume 4, pages 4053–4058, April 2004.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. Planetlab: An overlay testbed for broad-coverage
services. SIGCOMM Computer Communication Review, 33(3):3–12,
July 2003.

[7] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for
mobile sensing networks. Robotics and Automation, IEEE Transac-
tions on, 20(2):243–255, 2004.

[8] D. Cruz, J. McClintock, B. Perteet, O.A.A. Orqueda, Y. Cao, and
R. Fierro. Decentralized cooperative control - a multivehicle platform
for research in networked embedded systems. Control Systems, IEEE,
27(3):58–78, June 2007.

[9] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and
G. Sukhatme. Robomote: enabling mobility in sensor networks. In
Information Processing in Sensor Networks (IPSN), 2005 International
Symposium on, pages 404–409, 2005.

[10] P. De, A. Raniwala, S. Sharma, and T. Chiueh. Mint: a miniaturized
network testbed for mobile wireless research. In INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings IEEE, volume 4, pages 2731–2742,
March 2005.

[11] Pradipta De, Ashish Raniwala, Rupa Krishnan, Krishna Tatavarthi,
Jatan Modi, Nadeem Ahmed Syed, Srikant Sharma, and Tzi-cker
Chiueh. Mint-m: an autonomous mobile wireless experimentation
platform. In Mobile Systems, Applications and Services, 2006 In-
ternational Conference on, pages 124–137, 2006.

[12] J. R. M. de Dios, A. Jimnez-Gonzlez, A. de San Bernabe, and
A. Ollero. A Remote Integrated Testbed for Cooperating Objects.
Springer Science & Business Media, 2013.

[13] M.I. El-Hawwary and M. Maggiore. Global path following for the
unicycle and other results. In American Control Conference, 2008,
pages 3500–3505, June 2008.

[14] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas. Cooperative air and
ground surveillance. Robotics Automation Magazine, IEEE, 13(3):16–
25, Sept 2006.

[15] A. Jimnez-Gonzlez, J. R. M. de Dios, and A. Ollero. Testbeds for
ubiquitous robotics: A survey. Robotics and Autonomous Systems,
61(12):1487–1501, 2013.

[16] Z. Jin, S. Waydo, E.B. Wildanger, M. Lammers, H. Scholze, P. Foley,
D. Held, and R.M. Murray. Mvwt-ii: the second generation caltech
multi-vehicle wireless testbed. In American Control Conference, 2004.
Proceedings of the 2004, volume 6, pages 5321–5326 vol.6, June 2004.

[17] D. Johnson, T. Stack, R. Fish, D.M. Flickinger, L. Stoller, R. Ricci,
and J. Lepreau. Mobile emulab: A robotic wireless and sensor network
testbed. In Computer Communications (INFOCOM), 2006 IEEE
International Conference on, pages 1–12, 2006.

[18] E. King, Y. Kuwata, M. Alighanbari, L. Bertuccelli, and J. How.
Coordination and control experiments on a multi-vehicle testbed. In
American Control Conference, 2004. Proceedings of, volume 6, pages
5315–5320, June 2004.

[19] S. Kodagoda, A. Alempijevic, Shoudong Huang, M. de la Villefromoy,
M. Diponio, and L. Cogar. Moving away from simulations: Innovative
assessment of mechatronic subjects using remote laboratories. In In-
formation Technology Based Higher Education and Training (ITHET),
2013 International Conference on, pages 1–5, Oct 2013.

[20] T.W. McLain and R.W. Beard. Unmanned air vehicle testbed for
cooperative control experiments. In American Control Conference,
2004. Proceedings of the 2004, volume 6, pages 5327–5331, June
2004.

[21] N. Michael, J. Fink, S. G. Loizou, and V. Kumar. Architecture,
abstractions, and algorithms for controlling large teams of robots:
Experimental testbed and results. In Robotics Research, pages 409–
419. Springer, 2011.

[22] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The grasp
multiple micro-uav testbed. Robotics Automation Magazine, IEEE,
17(3):56–65, Sept 2010.

[23] Nathan Michael, J. Fink, and V. Kumar. Experimental testbed for large

multirobot teams. Robotics Automation Magazine, IEEE, 15(1):53–61,
2008.

[24] J. Mirkovic and T. Benzel. Teaching cybersecurity with deterlab.
Security Privacy, IEEE, 10(1):73–76, Jan 2012.

[25] S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O.C.
Jenkins. Robots as web services: Reproducible experimentation and
application development using rosjs. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 6078–6083,
May 2011.

[26] S. Osentoski, B. Pitzer, C. Crick, G. Jay, S. Dong, D. Grollman, H. B.
Suay, and O. C. Jenkins. Remote robotic laboratories for learning from
demonstration. International Journal of Social Robotics, 4:1–13, June
2012.

[27] L. E. Parker and A. Howard. Experiments with a large heterogeneous
mobile robot team: Exploration, mapping, deployment and detection.
International Journal of Robotics Research, 25:431–447, 2006.

[28] K. Petersen, R. Nagpal, and J. Werfel. Termes: An autonomous robotic
system for three-dimensional collective construction. In Robotics:
Science and Systems (RSS), 2011 Conference on, 2011.

[29] P. Petrovic and R. Balogh. Deployment of remotely-accessible robotics
laboratory. International Journal of Online Engineering (iJOE),
8(S2):31–35, 2012.

[30] D. Pickem, Myron Lee, and M. Egerstedt. The GRITSBot in its natural
habitat - a multi-robot testbed. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 4062–4067, 2015.

[31] B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O.C. Jenkins. Pr2 remote
lab: An environment for remote development and experimentation. In
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pages 3200–3205, 2012.

[32] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh. Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network
protocols. In Wireless Communications and Networking Conference,
2005 IEEE, volume 3, pages 1664–1669, March 2005.

[33] M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A low cost scalable
robot system for collective behaviors. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 3293–3298,
2012.

[34] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and
R. Nagpal. Collective transport of complex objects by simple robots:
theory and experiments. In Autonomous Agents and Multiagent
Systems (AAMAS), 2013 International Conference on, pages 47–54,
2013.

[35] V. Vladimerou, A. Stubbs, J. Rubel, A. Fulford, and G. Dullerud.
Multivehicle systems control over networks. IEEE Control Systems
Magazine, 26(3):56–69, 2006.

[36] M. Zhu and S. Martı́nez. Distributed coverage games for energy-aware
mobile sensor networks. SIAM Journal on Control and Optimization,
51(1):1–27, 2013.

