Comparing Apples and Oranges Through Partial Orders: An Empirical Approach

Peter Kingston and Magnus Egerstedt
kingston@gatech.edu, magnus@ece.gatech.edu
Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA

Abstract—In this paper, we try to understand what people mean when they say that two objects are “similar.” This is an important question in the area of human-robot interactions, where robots must interpret human movements in order to act in a “similar” manner. Specifically, we assume that we are given a collection of empirically generated pairwise comparisons between a subset of so-called alternatives (members of a given set), which produces a partial order over the set of alternatives. Based on this partial order, an inverse optimization problem is solved, producing a cost associated with each alternative that is consistent with the partial order. This cost is, moreover, assumed to be generative in that it can be used to select the globally best alternative. An experimental study involving the comparison of apples and oranges is presented to highlight the operation of the proposed approach.

I. INTRODUCTION

As the saying goes, one can not compare apples and oranges. But why not? It is clear that some apples look more like oranges than others. One can thus ask the question “What makes apple X look more like an orange than apple Y?” Or, more interestingly (yet also more absurdly), “If apple X is in fact a robot apple, how should it act in order to make it more like an orange?” These questions may seem like nonsense, but this is exactly what mobile robots are asked to do in some areas of human-robot interactions, e.g., Programming by Demonstration, where humans (oranges) ask robots (apples) to behave “like” them, e.g. [1],[2], [3],[4].

The basic idea behind the Programming by Demonstration paradigm is that the human operator should be able to instruct robots (typically manipulator arms) how to act without having to write code or use any other type of formal interface language. Instead, the operator should be able to “show” the robot how to act. But, since the robot typically has a completely different set of dynamical constraints, degrees of freedom, and even spatial scales, it is not at all clear what it should be doing in response to the human operator. For more on these issues, see for example [5],[6],[7],[8],[9].

In this paper, we address this seemingly ill-posed problem by formulating a version of it in such a way that it is amenable to analytical solution, while still being based on subjective judgments of “similarity.” The reason for insisting on the subjective element is that, at the end of the day, “similarity” is to be understood as “what people consider to be similar.” We should note, already at this point, that a related idea is pursued in [10],[11]. But, in those references, the basic premise is not that one is given a collection of comparisons, but rather a metrically ranked collection of examples. What is inherently similar between those works and the work presented in this paper is that the empirical data is to be used to find an underlying cost function that it is postulated people use when making judgments about the similarity of objects and motions.

It should also be noted that in econometrics, the problem of inferring people’s utility functions from data is well-studied. What is different with this problem is that the objective typically is to either understand game theoretic decision making strategies in a market or stochastic setting (e.g., [12], [13], [14]), or to locate clusters of consumers with similar preferences (e.g., [15], [16]). This paper is really about finding deterministic “similarity” measures that fit the empirical data, and, as such, it has an entirely different focus and objective.

II. PROBLEM FORMULATION

A. Experimentally Generated Comparisons

Let \(A \) be the set of all possible objects (“apples,” or robot actions) that we would like to compare relative to some ideal (“the orange,” or a human action) – most generally, we will refer to these as alternatives. To begin, we will assume very little about \(A \); it may not even be countable. If we are interested in programming a particular robot by demonstration, \(A \) might be the set of all possible motions that the robot can perform. If we are comparing actual apples to oranges in order to find the most “orangelike” apple, then \(A \) would be the set of all conceivable apples. To capture the subjectivity of comparing elements of this set to the ideal, suppose that we can conduct experiments, in each of which we ask human observers to perform a pairwise comparison of elements of \(A \); specifically, assume that we can pose questions of the form, “Which of these apples, X or Y, is more orangelike?” This particular form of experiment, it should be noted, has the advantage over other forms (e.g., rankings on a scale from 1-10) that it is less prone to batch effects, a psychological phenomenon in which people’s rankings are only accurate among objects compared at around the same time [15], [17].
We will assume for our purposes that the human observers we ask to compare alternatives are “similar,” in that they tend to have the same opinions about which alternatives are more like the ideal, so we can treat their responses meaningfully in an aggregate sense (i.e., we will not be concerned with Condorcet’s paradox).

Given this assumption, one can think of the group of humans as a generalized comparator, or sorting function, which it will be our goal to “learn” from output measurements. More specifically, we assume that the human observers are presented with an unsorted pair of alternatives as “input,” and that they “output” a corresponding sorted pair, ordered by similarity to the ideal. That is, the humans in these experiments behave as a map h from the set $U = A \times A$ of questions, to the set $\mathcal{Y} = A \times A$ of answers, where h is defined,

$$h(a_a, a_b) = \begin{cases} (a_a, a_b) & a_a \succ a_b \\ (a_b, a_a) & a_b \succ a_a \end{cases}$$

and where we use “$a_a \succ a_b$” to denote “a_a is more ‘orangelike’ than $a_b.$” From this point of view, an “experiment” – in which we present alternatives to human observers and obtain similarity judgments – is really just a function evaluation of $h.$

Now let $E \subset A$ be a finite, indexed subset of alternatives that we, the experimenters, will actually present to the human observers; we will refer to these as the experimental alternatives. The reason for defining this set is that, ideally, we would like to be able to present only a few alternatives (i.e., those in the set E), in order to draw conclusions about preferences over all possible alternatives (everything in A – which may not even be countable). Additionally, let $P = \{1, 2, \ldots, P\}$ be the index set associated with E; we define this for convenience so that we may refer to “the ith alternative,” which we will abbreviate $E_i \in E.$

Next, suppose that we ask the human observers to perform a series of pairwise comparisons of alternatives. That is, we present elements of E two-at-a-time to human observers in an indexed set of questions $Q = \{u^1, u^2, \ldots\} \subset E \times E \subset U$ to obtain the indexed set of responses $R = \{y^1, y^2, \ldots\} = \{h(u^1), h(u^2), \ldots\} \subset E \times E \subset \mathcal{Y}.$ In other words, thinking of the humans again as a comparator, we input a sequence of unsorted pairs, and receive a corresponding sequence of sorted pairs as output; from this, we hope to deduce the inner workings of the comparator.

![Fig. 1. Human as comparator – a memoryless nonlinear system](image)

We will also assume that a vector of feature scores $\varphi(a) \in \mathcal{F} = \mathbb{R}^d$ associated with each alternative $a \in A$ is available automatically from experimental data. If we are comparing actual apples to oranges, such features might include the average RGB colors of the apples, their dimensions along various directions, and similar measurements. (In fact, we do exactly this, as will be described later in the paper.) Moreover, for the special case when we are evaluating the features of an alternative in the experimental set E, we will for compactness of notation write $\varphi(E_i) = \varphi_i.$

Now, suppose that we can form a parametrized cost, $J : \mathbb{R}^N \times \mathcal{F} \rightarrow \mathbb{R}$ that, given some parameter $\rho \in \mathbb{R}^N,$ maps the features (an element of \mathcal{F}) of any alternative in A to a real number, and that

$$J(\rho, \varphi(a_a)) < J(\rho, \varphi(a_b)) \iff a_a \succ a_b.$$ (2)

In other words, we assume that we can define a cost such that “cheaper” alternatives are more like the ideal. That is to say, that given $J, \rho,$ and the features corresponding to two “apples,” we know exactly which of the two is more “orangelike.” To make this ability to compare alternatives explicit, we define an associated output map $h_J : U \rightarrow \mathcal{Y},$ that sorts pairs of alternatives in this fashion; i.e.,

$$h_J(a_a, a_b) = \begin{cases} (a_a, a_b) & J(\varphi(a_a)) > J(\varphi(a_b)) \\ (a_b, a_a) & J(\varphi(a_a)) > J(\varphi(a_b)) \end{cases}.$$

The significance of h_J is that it is the comparator function consistent with (2). Our goal, then, is to determine a ρ (for fixed J) and hence a cost function such that $h_J(u) = h(u)$ $\forall u \in U.$

In other words (and for compactness of notation defining $J(\rho, \varphi(E_i)) = J_i(\rho)$ for the special case when we are evaluating the cost of an alternative in the experimental set) the problem we are trying to solve is that of selecting the parameter ρ such that,

1) The pairwise comparisons are consistent with the costs, i.e., $J_i(\rho) < J_j(\rho), \forall (E_i, E_j) \in \mathcal{R}$.
2) ρ satisfies some feasibility constraint $\pi(\rho) = 0$.

We let $\Omega(E)$ denote the set of all such feasible ρ parameters and given that at least one feasible ρ exists, we want moreover to select $\rho \in \Omega(E)$ in such a way that it minimizes the smallest of all the alternative costs.

Summarizing these points, what we want to achieve is to solve the min-min problem

$$\min_{i \in P} \left\{ \min_{\rho \in \mathbb{R}^N} J_i(\rho) \right\}$$

subject to the constraint

$$\rho \in \Omega(E).$$

Before we can actually solve this problem, we first need to establish some necessary conditions for the existence of a solution associated with ensuring that the pairwise comparisons are rational in the sense that they induce a partial order on the alternatives. For this, we need to introduce the notion of a directed alternative graph $\mathcal{G}_E = (E, \mathcal{R}),$ where the vertex set is equal the presented alternatives, and a directed edge between E_i and E_j exists if and only if there exists a $y^k \in \mathcal{R}$ such that $(E_i, E_j) = y^k.$ In other words, each edge encodes a judgment about which of the vertices (alternatives) adjacent to it is “more orangelike.”
Now, in order to ensure that we have indeed a partial order, i.e. that we can not end up with situations where
\[E_i > E_j, E_j > E_k, E_k > E_i, \]
we have to assume that \(G \) is acyclic. Assuming that this is indeed the case, and that the feasible set \(\Omega(\mathcal{E}) \) is non-empty, then the min-min problem can in fact be solved by solving a total of at most \(O(\mathcal{E}) \leq P \) problems, where
\[o(\mathcal{E}) = \text{card}(O(\mathcal{E})), \]
and \(O(\mathcal{E}) \) is the set of all alternatives that won at least one comparison while not losing any comparison, i.e.
\[O(\mathcal{E}) = \left\{ i \in \mathcal{P} \left| \exists \mathcal{E}_j \text{ s.t. } (\mathcal{E}_i, \mathcal{E}_j) \in \mathcal{R} \text{ and } \exists \mathcal{E}_k \text{ s.t. } (\mathcal{E}_k, \mathcal{E}_i) \in \mathcal{R} \right. \right\}. \]
Using the terminology from graph theory, what these nodes thus satisfy is that they have out-degree greater than zero and in-degree equal to zero.

B. The Transitive Reduction

In fact, for many graphs, the number of constraints when solving each of these subproblems can be reduced; i.e., we can remove edges from the graph, and thereby reduce the execution time of the optimization algorithm. For instance, consider the graph \(G_3 \) given in Figure 2. For this graph, edge (2, 4) imposes the constraint that \(J_2(\varphi) < J_4(\varphi) \), yet since (2, 3) imposes \(J_2(\varphi) < J_3(\varphi) \) and (3, 4) imposes \(J_3(\varphi) < J_4(\varphi) \), then by transitivity (2, 3) and (3, 4) collectively render (2, 4) redundant, and hence the alternative graph \(G_3 \) can be replaced by \(G_4 \). That is to say, if we optimize the parametrized cost subject to all the constraints represented by \(G_4 \), then all of the constraints represented by \(G_3 \) will automatically be satisfied. From a graph-theoretic point of view, \(G_3 \) is the transitive reduction of \(G_4 \).

Formally, using Aho’s definition [18], \(G^t \) is the transitive reduction of a graph \(G \) if,
1) there is a directed path from vertex \(u \) to vertex \(v \) in \(G^t \) if and only if there is a directed path from \(u \) to \(v \) in \(G \), and
2) there is no graph with fewer arcs than \(G^t \) satisfying condition 1.

In the case of a directed acyclic graph, the reduction \(G^t \) (which is unique) is a subgraph of \(G \). It was shown in [18] that computation of the transitive reduction is of the same complexity as transitive closure, and hence matrix multiplication; thus, the transitive reduction can be found in \(O(n \log^2 7) \) steps using Strassen’s algorithm [19]. (See, e.g., [20], [21]).

III. Cost Models

In the following sections, we will present two different, related examples of cost functions, and investigate the implications of each choice.

A. Linear Cost Models

As an example, consider a situation in which the alternative costs are linear, i.e. \(J_i = \rho^T \varphi(E_i) \) and all feature vectors \(\varphi \) are non-negative. In that case, the min-min problem becomes
\[
\min_{i \in \mathcal{P}} \left\{ \min_{\rho \in \mathbb{R}^N} \rho^T \varphi(E_i) \right\},
\]
subject to the constraints
\[
\begin{aligned}
\rho^T \varphi(E_i) &\leq \rho^T \varphi(E_j), \forall (E_i, E_j) \in \mathcal{R} \\
1^T \rho &= 1 \\
\rho &\geq 0,
\end{aligned}
\]
where \(1 = (1, \ldots, 1)^T \), and where we, for simplicity have assumed that \(N = q \), i.e. the number of parameters (the dimension of \(\rho \)) is equal to the number of features (the dimension of \(\varphi \)). We moreover replaced the pairwise comparison constraints with non-strict inequalities.

We directly note that since \(\rho \geq 0 \), the notion of dominance allows us to reduce the number of constraints and possibly also \(o(\mathcal{E}) \) in the case when the problem is linear. In particular, an alternative \(E_i \) is said to linearly dominate alternative \(E_j \) if \((E_i, E_j) \in \mathcal{R} \) and \(\varphi_i \leq \varphi_j \), where the inequality is taken componentwise. And, \(\rho \geq 0 \) directly implies that if this is indeed the case then \(\rho^T \varphi_i \leq \rho^T \varphi_j \) and as such this constraint can be removed from the problem altogether. That is, the structure imposed by our choice of linear cost function allows for additional simplifications beyond those implied by transitivity alone.

B. Metric Cost Models

Colloquially, when comparing various alternatives, we often speak of options as being “closer to what we would like,” or of being “far from perfect.” Motivated by this everyday use of geometric language, we would now like to consider metric costs of the form,
\[
J_i = d(\varphi(E_i), \varphi(\bar{a}))
\]
where \(\bar{a} \in \mathcal{A} \) is the “ideal” or “most orangelike” apple – which is unknown to us, the experimenters – and \(d(\cdot, \cdot) \) is a metric in the inner product space \(\mathcal{F} \). (We will assume the usual Euclidean metric and inner product, but what follows is readily generalizable to other inner products.) In this case, \(J \) is entirely parametrized by \(\rho = \varphi(\bar{a}) \), so the goal will be to determine this ideal feature vector from responses.
What does an individual response \(y = (E_1, E_2) \) tell us about the location of \(\varphi(\tilde{a}) \)? Simply,

\[
\varphi(\tilde{a}) \in \{ \varphi \mid n^T \varphi \geq b \} \iff d(\varphi_2, \varphi(\tilde{a})) \geq d(\varphi_1, \varphi(\tilde{a})). \tag{4}
\]

where \(\varphi_1 = \varphi(E_1), \varphi_2 = \varphi(E_2), n = (\varphi_1 - \varphi_2), \) and \(b = \frac{1}{2} n^T (\varphi_1 + \varphi_2). \) (This follows immediately from Lemma 3.1, which is given at the end of this section.) Hence, a sequence of \(n \) outputs \(y_1, y_2, \ldots, y^n \) (with \(y^k = (E_1^k, E_2^k), \varphi_j^k = E_j^k \forall k = 1, 2, \ldots, n; j = 1, 2 \) implies,

\[
\tilde{\varphi} \in \bigcap_{k=1}^{n} \left\{ \varphi \mid (\varphi_j^k - \varphi_j^k)^T \varphi > \frac{1}{2} (\varphi_j^k - \varphi_j^k)^T (\varphi_j^{k + 1} + \varphi_j^{k + 1}) \right\}
\tag{5}
\]

or equivalently, \(\tilde{\varphi} \) is a solution to

\[
\begin{bmatrix}
(\varphi_1^k - \varphi_2^k)^T \\
(\varphi_1^k - \varphi_2^k)^T \\
\vdots \\
(\varphi_1^k - \varphi_2^k)^T \\
\end{bmatrix} \varphi > \frac{1}{2}
\begin{bmatrix}
(\varphi_1^k - \varphi_2^k)^T (\varphi_1^{k + 1} + \varphi_2^{k + 1}) \\
(\varphi_1^k - \varphi_2^k)^T (\varphi_1^{k + 1} + \varphi_2^{k + 1}) \\
\vdots \\
(\varphi_1^k - \varphi_2^k)^T (\varphi_1^{k + 1} + \varphi_2^{k + 1}) \\
\end{bmatrix}
\tag{6}
\]

where “\(> \)” indicates componentwise inequality.

The geometric interpretation of (4) is that \(\tilde{\varphi} \) must lie within a half-plane in feature space. Likewise, (5) means that \(\tilde{\varphi} \) must lie within the intersection of the half-planes; this is a polytope in \(F \).

Before continuing, we now state the Lemma referred to earlier in this section; its statement is given more generally than (4). The geometric interpretation is that comparisons between distances relative to reference points can be interchanged with signed point-plane distance tests.

Lemma 3.1: Let \(\varphi_1, \varphi_2, \tilde{\varphi} \) be any vectors in the inner product space \(\mathbb{R}^m \) for some \(m \in \mathbb{N} \) (with the usual inner product), and let \(\star \) be a binary relation from the set, \(\{ =, <, >, \leq, \geq \} \). Then,

\[
\tilde{\varphi} \in \{ \varphi \mid n^T \varphi \star b \} \iff d(\varphi_2, \tilde{\varphi}) \star d(\varphi_1, \tilde{\varphi})
\]

where \(n = (\varphi_1 - \varphi_2), \) and \(b = \frac{1}{2} n^T (\varphi_1 + \varphi_2). \) The proof of this is based on the Polarization Identity and is straightforward.

1) **An asymptotic observer for metric cost models:** Suppose we have access to a very long (infinite) sequence of comparisons \(y^0, y^1, y^2, \ldots \in Y, \) perhaps as the result of passive monitoring over an extended period of time, and we would like to know the features \(\tilde{\varphi} \) of the ideal alternative. If alternatives are presented at random to the comparator, can we construct an asymptotic observer for \(\tilde{\varphi} \) which can avoid storing all of the very (infinitely) many constraints implied by this sequence? It turns out that the answer is yes, and exactly such an observer is given by,

\[
\varphi^{k+1} = \begin{cases} P^k \tilde{\varphi}^k + \frac{\alpha^k}{(n^k)^2} \Delta^k & \text{if } (n^k)^T \varphi^k < b^k \\ \varphi^k & \text{otherwise} \end{cases} \tag{7}
\]

\[
P^k = I - \alpha^k (n^k)(n^k)^T (n^k)^2 \tag{8}
\]

\[
n^k = (\varphi_1^k - \varphi_2^k) \tag{9}
\]

\[
b^k = \frac{1}{2} n^T (\varphi_1^k + \varphi_2^k) \tag{10}
\]

for any sequence of observer gains \(\alpha^k \in (0, 2), \) regardless of \(\tilde{\varphi} \). That is, \(\tilde{\varphi} \) converges to \(\varphi \) in probability as \(k \to \infty \), given a few assumptions; we will prove this shortly in Theorem 3.1. Moreover, note that, although (7-10) are broken down into separate expressions for clarity of presentation, they are in fact all functions of \(\tilde{\varphi} \), so this observer can be implemented with only \(\dim F \) real memory elements.

Geometrically, the observer (7-10) operates through a series of projections (or under/over-projections, if \(\alpha \neq 1 \)), as illustrated in Figure 3, with each projection bringing the estimate \(\tilde{\varphi}^k \) of the ideal closer to the true ideal, \(\tilde{\varphi} \). A proof of convergence follows as Theorem 3.1.

![Fig. 3. A series of the observer’s estimates, with \(\alpha^k \in (0, 2) \) for all \(k \). The initial estimate is \(\tilde{\varphi}^0 \), and the true ideal is given by \(\varphi \). In step 0, the observer projects \(\tilde{\varphi}^0 \) onto the plane (solid line) corresponding to the measured output \(y^0 = (\varphi_1^0, \varphi_2^0) \) to produce \(\tilde{\varphi}^1 \). In step 1, the observer makes no changes to its estimate, because \(\tilde{\varphi}^1 \) is on the correct side of the plane corresponding to \(y^1 \); hence \(\tilde{\varphi}^2 = \tilde{\varphi}^1 \). In step 2, the observer projects \(\tilde{\varphi}^2 \) onto the plane corresponding to \(y^2 \) to create the estimate \(\tilde{\varphi}^3 \), which is yet closer to \(\varphi \).](image)

Theorem 3.1: Let \(u^k = (a^k, a^k) \) be a sequence of random alternatives issued as input to a comparator system with metric cost function as defined in (3), such that the features \(\varphi_0^k, \varphi_0^k \in F \) of these alternatives are i.i.d. random variables drawn according to any probability density function \(p(\varphi) \) which is nonzero in an open ball \(B(\tilde{\varphi}, r) = B_r \) around the optimal alternative, \(\tilde{\varphi} \). Then, the asymptotic observer given by (7) converges to \(\tilde{\varphi} \) in probability.

Proof:

1. If \((n^k)^T \tilde{\varphi}^k > b^k \), then \(d(\tilde{\varphi}^{k+1}, \tilde{\varphi}) < d(\tilde{\varphi}^k, \tilde{\varphi}) \). The distances \(d(\tilde{\varphi}^k, \tilde{\varphi}) \) and \(d(\tilde{\varphi}^{k+1}, \tilde{\varphi}) \) are related through the Polarization Identity by (where \(\Delta^k = \tilde{\varphi}^k + \tilde{\varphi} - \tilde{\varphi}),

\[
||\tilde{\varphi}^{k+1} - \tilde{\varphi}||^2 = ||\tilde{\varphi}^k + \Delta^k - \tilde{\varphi}||^2 =

||\tilde{\varphi} - \tilde{\varphi}||^2 + ||\Delta^k||^2 + 2(\tilde{\varphi} - \tilde{\varphi})^T \Delta^k
\]

so, it order to show that \(||\tilde{\varphi}^{k+1} - \tilde{\varphi}|| < ||\tilde{\varphi} - \tilde{\varphi}|| \), it is sufficient to demonstrate

\[
||\Delta^k||^2 + 2(\tilde{\varphi} - \tilde{\varphi})^T \Delta^k < 0. \tag{11}
\]
From (7, 8),
\[\Delta^k = \left(I - a_k(n^k)T(n^k)^T \right) \varphi^k + \frac{\alpha b_k}{(n^k)T(n^k)} n^k - \varphi^k \]
\[= \frac{\alpha}{(n^k)T(n^k)} (b_k - (n^k)T\varphi^k) n^k \]
so, substituting \(\Delta \) into (11) (and dropping the superscript indices \(k \)),
\[\frac{\alpha^2}{n^2T(n^2)\varphi^2} + 2\frac{\alpha}{nT(n^2)} \varphi^T(n^2)\varphi - \varphi < 0 \]
(13)
or equivalently, so long as \(\alpha > 0 \) (as we require),
\[(b - n^T\varphi) \left[(a - n^T\varphi) + 2nt^T(\varphi - \varphi) \right] < 0. \]
(14)
Since by assumption \(n^T\varphi < b \), this is satisfied iff the second factor is negative; that is,
\[\alpha (b - n^T\varphi) + 2nt^T(\varphi - \varphi) = ab + (2 - \alpha)n^T\varphi - 2n^T\varphi < 0. \]
(15)
or equivalently
\[\frac{1}{2}ab + \left(1 - \frac{1}{2} \right) n^T\varphi < n^T\varphi. \]
(16)
Since \(n^T\varphi < b \), and by Lemma 3.1, \(n^T\varphi \geq b \), this is satisfied so long as \(\alpha \in (0, 2) \), as we require.

2. The sequence \(d^k = ||\varphi^k - \varphi^k|| \), \(k = 0, 1, 2, \ldots \) is nonincreasing. In the second case of (7), \(\varphi^{k+1} = \varphi^k \); this is nonincreasing. In the first case, \((n^k)^T\varphi^k > b^k\), so \(d^{k+1} < d^k \) by point 1 above.

3. g.l.b.(\(d^k \)) = 0 with unit probability. By positivity of \(d(\varphi, \cdot) \), zero is a lower bound. To show that this is the greatest such bound, consider some \(\epsilon > 0 \) and suppose that, at iteration \(m \), \(d(\varphi^m, \varphi) = \epsilon \). Now, let \(z = \min(r, \epsilon/2) \), and consider the open balls \(B_3 = B(c_1, z/4), B_2 = B(c_2, z/4), \) where the center points \(c_1, c_2 \) are defined,
\[c_j = \frac{\varphi + (\varphi - \varphi^k)(2j - 1)}{4} z; \]
additionally, let \(\varphi_1 \in B_1, \varphi_2 \in B_2 \). Then by Lemma 3.1, we can confirm that \(\bar{\varphi} \) and \(\bar{\varphi} \) are on opposite sides of the plane (and hence, that a projection will occur) by verifying that,
\[||\varphi_2 - \bar{\varphi}|| < ||\varphi_1 - \bar{\varphi}|| \]
(17)
\[||\varphi_2 - \bar{\varphi}|| > ||\varphi_1 - \bar{\varphi}||. \]
(18)
Considering the first of these, we note by the triangle inequality,
\[||\varphi_2 - \bar{\varphi}|| \leq ||\varphi_2 - \varphi_2|| + ||\varphi_2 - \bar{\varphi}|| < \frac{\epsilon}{2} + ||\varphi_2 - \bar{\varphi}|| \]
whereas, by the inverse triangle inequality,
\[||\varphi_2 - \bar{\varphi}|| \geq ||\varphi_2 - c_1|| + ||c_1 - \bar{\varphi}|| \geq ||c_1 - \bar{\varphi}|| = \frac{\epsilon}{2} + ||\varphi_2 - c_2|| \]
so this is indeed the case. Considering the second inequality (18), we have likewise,
\[||\varphi_1 - \bar{\varphi}|| \leq ||\varphi_1 - c_1|| + ||c_1 - \bar{\varphi}|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \frac{\epsilon}{z} \]
and
\[||\bar{\varphi} - \varphi|| \geq ||\varphi_2 - \varphi|| \]
so this inequality holds as well. Therefore, any \(\varphi_1, \varphi_2 \) from \(B_1, B_2 \) are associated with a plane which separates \(\bar{\varphi} \) from \(\bar{\varphi} \) and hence triggers a projection. Since \(B_1 \) and \(B_2 \) have nonzero measure, and are subsets of \(B \), in which \(p(\cdot) \) is nonzero, then the probabilities for this iteration \(P_1 = Pr(\text{a point is selected in } B_1) \) and \(P_2 = Pr(\text{a point is selected in } B_2) \) are both nonzero, and therefore, since the \(u^k \) are independent, \(P_{\text{both}} = Pr(\text{one point is selected in } B_1 \text{ and the other is selected in } B_2) = P_1P_2 \) is nonzero, and the probability that this occurs for at least one iteration \(k > m \) is given by \(1 - \prod_{k=m}^{\infty} (1 - P_{\text{both}}) = 1 \) or in other words, with probability one, there exists a \(q > m \) such that \(P((n^q)^T\bar{\varphi} > b^q) \). Then, by point 1, \(d(\bar{\varphi}, \varphi) < d(\bar{\varphi}^m, \varphi) = \epsilon \), and so \(\epsilon \) with unit probability, cannot be a lower bound. Since \(d^k \) is a nonincreasing sequence in \(\mathbb{R} \) and g.l.b.(\(d^k \)) = 0, \(d^k \) converges to 0 and thus \(\bar{\varphi} \) converges to \(\bar{\varphi} \) in probability.

An example of the estimate trajectory in feature space generated by such an observer is given in Figure 4. For this example, \(F = \mathbb{R}^2 \), and features were drawn from a uniform distribution in the square \([-20, 20] \times [-20, 20] \). The estimate evolves from its initial condition, \(\bar{\varphi}^0 = (-15, 15)^T \) to near the ideal \(\bar{\varphi} = (17, 0)^T \).

![Figure 4](image-url)
angle relative to apple, (13-14) dimple angle and depth, and (15) roundness.

The partial order over the apples was thus generated by having a group of people make a number of randomly selected, pairwise comparisons (as the one depicted in Figure 5). Represented as a directed alternative graph, the results of these experiments are given as Figure 6.

This results in the following optimal cost parameter ρ (all components of ρ not listed below are 0.0000):

\[
\begin{align*}
\rho_1 &= 0.0505 \quad \text{(Hue)} \\
\rho_3 &= 0.1861 \quad \text{(Brightness)} \\
\rho_5 &= 0.2846 \quad \text{(Green)} \\
\rho_6 &= 0.2834 \quad \text{(Width)} \\
\rho_{11} &= 0.1953 \quad \text{(Stem Length)}
\end{align*}
\]

which tells us that the single most important attribute that distinguishes apples from each other relative to oranges is the fifth dimension of the parameter space, namely, the amount of green in RGB colorspace; this is closely followed, perhaps surprisingly, by the width of the apple.

V. Conclusions

In this paper, we present a method for inferring the underlying cost structure that we assume is implicitly computed when people make comparisons between alternatives. In particular, given a collection of such comparisons, we produce a partial order over the set of alternatives, which, in turn, allows to infer the corresponding cost function (given a parametrized cost model and certain regularity assumptions on how people act.)

An example application of this is given in terms of comparing apples and oranges, and we recognize that this may not be the world’s most compelling application in itself. Instead, we view this as a first step towards understanding and solving the very important question of Programming by Demonstration in robotics, where a robot is asked to act “similarly” to a human operator.

Acknowledgments

This work was sponsored by the US National Science Foundation through Creative IT Grant # 0757317. The human-study was conducted within the Georgia Institute of Technology, Institute Review Board Protocol H08162 – “Perceived Similarity Study.”

REFERENCES

