
Distributed-Infrastructure Multi-Robot Routing
using a Helmholtz-Hodge Decomposition

Peter Kingston and Magnus Egerstedt

Abstract— Using graphs and simplicial complexes as models
for an environment containing a large number of agents,
we provide distributed algorithms based on the Helmholtz-
Hodge decomposition that, given desired flow rates on edges
or across faces, produce incompressible approximations to
the specified flows. These flows are then “lifted” to produce
hybrid controllers for the agents, and a related algorithm
is described that computes continuous streamfunctions over
the environment, also in a distributed way.

I. INTRODUCTION

It is commonly appreciated that many operators on graphs
have strong physical and mathematical analogues on
differentiable manifolds. Foremost among these is the
graph Laplacian, whose study is particularly popular in
the area of multiagent control. Yet despite this under-
standing, a number of related physical analogues appear
to have been left unexplored in the multiagent systems
literature. In this paper, we investigate one of these,
a fluid-mechanical–inspired method by which vehicles
– e.g., airplanes – can be routed within and between
regions of an environment, in a manner that mimics
incompressible flow.

The two main contributions of this paper are (1) a dis-
tributed, continuous-time algorithm for producing incom-
pressible flows on graphs, and a connection to the well-
known consensus algorithm, and (2) a simple method for
“lifting” these flows to higher-dimensional models of the
environment, to produce either (a) hybrid control laws,
or (b) global streamfunctions (via another distributed
algorithm), that are closely related.

A number of ideas inform and motivate this work.

The first of these is the recognition that real implemen-
tations of multiagent algorithms will often require infras-
tructure, in the form of wireless communications hubs,
air traffic control towers, or other base stations. In these
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situations, it is natural to think of the static infrastructure
as having some control authority over mobile agents –
e.g., aircraft – that operate with its assistance. One then
obtains Eulerian models for the multiagent system, a
concept explored in [1].

A second set of ideas comes from the simulation of fluids
(see e.g. [2], [3]), where the pressure in a fluid arises
as the Lagrange multipliers corresponding to an incom-
pressibility constraint. Fluid flow has been the inspiration
for other work in multi-robot navigation, including [4]
which models robots as an adiabatic gas (thus relaxing
the incompressibility constraint) using smoothed particle
hydrodynamics (a Lagrangian simulation technique), and
[5], which computes continuous streamfunctions for the
avoidance of individual static and moving obstacles.

The third concept is the Helmholtz-Hodge decomposition,
both of a vector field on a smooth manifold (see e.g.
[6]), and of a chain on a simplicial complex (as in [7]
or [8]). The latter is the subject of discrete exterior
calculus (discussed in [9]), which has found applica-
tion in a number of areas including computer graphics
(e.g. [10]), image processing and clustering (e.g. [11]),
computational physics [12], statistical ranking [13], and
multiagent control, including [14] where a connection
to continuous PDEs is made, [15] which explores a
related Laplacian-like operator, [16], which uses higher-
order Laplacian dynamics to probe the homology of the
complex, and [17], which additionally gives subgradient
algorithms to find sparse representatives of the homology
groups.

The formalism used in this paper closely parallels that
of [16] and [17]. Philosophically, however, the goals are
very different – in [16] and [17], one seeks to locate holes
in a network; here, we look to direct agents throughout
an environment. Technically, there are also important
differences: We are not projecting 1-chains onto the
harmonic subspace, and indeed we have no interest in
separating the harmonic component from the rotational
component at all, so we are able to work with lower-
dimensional Laplacians. More importantly, streamfunc-



tions and Hamiltonian vector fields appear nowhere in
that work.

We would also like to mention [18], to which this work
is indirectly related. There, an extremely interesting Dual
Lyapunov approach is explored in which the divergence
of state-space mass flows is used to analyze the stability
of systems; those ideas are orthogonal (literally, in some
ways!) to those of this paper.

In the remainder of this paper, we review a number
of definitions that will be useful to us, emphasize a
set of analogies that motivate this work, and describe
the Helmholtz-Hodge decomposition, before giving dis-
tributed algorithms for computing incompressible flows
and lifting them to higher-dimensional models of the
environment. We conclude by discussing an application
to air traffic management, and showing an example from
simulation demonstrating the proposed methods.

II. DEFINITIONS

A. Abstract Simplicial Complex

The basic object with which we will model the environ-
ment is the abstract simplicial complex. In this section,
we provide a brief review of this subject, mainly to
introduce the notation and terminology that will be used
in the rest of the paper. The interested reader may wish to
refer to [7] or [8] for more intuition (although the formal
definitions used in each are slightly different), as well as
the introductions to [13] (which uses a dual formulation)
and [17]. The definitions that follow in this section are
more-or-less standard.

Given a finite set V (K) of vertices, a simplex ∆ ⊂ V (K)
is a subset of V (K). If the cardinality of that subset is
k+1, then the order of ∆ is said to be k, and it is called
a k-simplex. Any (k− 1)-simplex σ ⊂ ∆ is a face of ∆.
A simplicial complex K is a finite set of simplices that is
closed with respect to taking faces; i.e., if ∆ ∈ K and σ
is a face of ∆, then σ ∈ K. A simplicial k-complex K is
said to be pure if all simplices whose order is less than
k are faces of higher-order simplices. We denote the k-
simplices of K by Σk(K). A simplex ∆ ∈ K is a coface
of σ ∈ K if σ is a face of ∆. Two simplices σ1, σ2 are
lower-adjacent (denoted σ1^σ2) if they share a face, and
upper-adjacent (denoted σ1_σ2) if they share a coface.

An orientation of a simplex is a total order over its
vertices, modulo even permutations, with a formal sign.1

1The formal sign is necessary only to allow 0-simplices to have two
orientations.

If the set ∆ = {v0, · · · , vk} is a simplex, we denote an
orientation of ∆ by an ordered list, e.g. [v0, · · · , vk]. Two
orientations related by an odd permutation are said to be
opposite, and this is written with a minus sign; for in-
stance [v0, v1, v2] = −[v1, v0, v2]. Finally, an orientation
of a simplex induces an orientation on its faces; the i-th
oriented face of an oriented simplex ∆ = [v0, · · · , vk] is,

Fi(∆) = (−1)i[v0, · · · , vi−1, vi+1, · · · , vk]

= (−1)i∆/vi . (1)

Likewise, an orientation of a simplicial k-complex is an
assignment of an orientation to each of its k-simplices. A
simplicial k-complex is consistently oriented if, for every
pair of lower-adjacent k-simplices ∆1,∆2 sharing a face
σ, ∆1 and ∆2 induce opposite orientations on σ.

A k-chain c ∈ Ck(K) over an oriented simplicial com-
plex K is a formal sum of elements from Σk(K) taking
coefficients from some commutative ring; we use the real
numbers, R. For instance, the formal sum 1.2v0+2.6v1−
0.5v4 is a 0-chain over an appropriate simplicial complex.
Formal sums can be added and multiplied by scalars in
the natural way, so Ck(K) forms a finite-dimensional real
vector space. Additionally, we equip Ck(K) with an inner
product, 〈·, ·〉, defined by〈

N∑
i=0

aiσi,

N∑
i=0

biσi

〉
=

N∑
i=0

aibi (2)

where Σk(K) = {σ0, · · · , σN}, and ai, bi ∈ R ∀i are the
chain coefficients.

Boundary operators will be central to this work. The k-th
boundary operator δk(K) : Ck(K) → Ck−1(K) on the
oriented simplicial complex K is defined,

δk(K)

(
N∑
i=0

aiσi

)
=

N∑
i=0

ai

k∑
j=0

Fj(σi) ; (3)

by convention, δ0(K) = 0. The null space of δk(K)
is called the k-cycles of K and denoted Zk(K); the
image of δk+1(K) is called the k-boundaries and denoted
Bk(K). The k-th homology group is the quotient space
Hk(K) = Zk(K)/Bk(K); its dimension is the k-th Betti
Number of K. Finally, the k-th combinatorial Laplacian
is defined, Lk(K) = δ∗k(K)δk(K) + δk+1(K)δ∗k+1(K),
where δ∗k(K) denotes the adjoint operator to δk(K),
called the k-th coboundary operator. The matrix rep-
resentations of δk(K) and δ∗k(K) are transposes of one
another.

For the special case when K is 1-dimensional and so
isomorphic to a graph, we may also use terminology



from graph theory [19].2 There, C0(K) is called the
vertex space, C1(K) is the edge space, δ1(K) is the cycle
space (and its dimension is the cyclomatic number), and
image δ∗1(K) is the cut space.

A realization of a simplicial complex K is an isomorphic
complex K ′ whose vertex set V (K ′) is a finite subset of
Rn for some n ∈ N, and its Rips Shadow R(K ′) ⊂ Rn

is the union of the convex hulls of its simplices’ vertex
sets.

B. Analogies

The remainder of this paper is strongly motivated by
close analogies between k-chains of different orders, and
objects defined on differentiable manifolds.

A first set of analogies relates to the use of graphs as
models for environments. Here, a vertex is the analogue
of a point on a smooth manifold, and an edge is the ana-
logue of an arclength-parametrized curve or unit tangent
vector; here, upper-adjacency represents topology. A 0-
chain is the analogue of a scalar field; its coefficients are
values assigned to the corresponding vertices. A 1-chain
is the analogue of a vector field; it can be thought of as
assigning a directed flow to each edge. The coboundary
operator δ∗1 : C0(K)→ C1(K) is the analogue of the gra-
dient operator, and the boundary operator δ1 : C1(K)→
C0(K) is the analogue of the divergence operator. Just
as the Laplacian on Rn factors as ∇ = div grad, so too
does the zeroeth combinatorial Laplacian factor into the
analogous combinatorial operators, as L0 = δ∗1 ◦ δ1.

We will make a dual analogy for simplicial 2-complexes.
Here, a triangle is the analogue of a point on a smooth
manifold, and an edge or face is the analogue of a unit
tangent vector; here, lower-adjacency represents topol-
ogy. A 2-chain is the analogue of a scalar field. A 1-
chain is the analogue of a vector field; it represents a
directed flux across each face. The boundary operator
δ∗2 : C2(K) → C1(K) is the analogue of the gradient
operator, and the coboundary operator δ∗1 : C1(K) →
C2(K) is the analogue of the divergence operator.

III. HELMHOLTZ-HODGE DECOMPOSITION

The Helmholtz-Hodge decomposition of a vector field v :
R3 → R3 its unique representation as the sum

v = vc + vr + vh (4)

2In graph theory, it is more common to use the two-element field
F2 = {0, 1} (i.e., XOR serves as the addition operation) instead of R.

with div vc 6= 0, curl vc = 0; div vr = 0, curl vr 6= 0;
and div vh = 0, curl vh = 0. From a functional analysis
perspective, the three terms are projections of v onto three
orthogonal linear subspaces of the space of vector fields
on R3. The three terms are the the curl-free, divergence-
free, and harmonic components, respectively. The first
represents sources and sinks, the second vortices, and the
third global flows representing the topology of the space,
and illustrated in Figure 1.

On a simplicial 1-complex (i.e., a graph) G, we can
compute an analogous decomposition of a 1-chain v ∈
C1(G) as

v = vc + vr (5)

with vc ⊥ vr under the inner product (2); this is the
subject of section III-A. Note that by working with the
3-clique complex of a graph – a simplicial 2-complex
– it is possible to further decompose v into a total of
three components, including an analogue to the harmonic
component of (4); this is the path taken in e.g. [13], but
it comes at the cost of treating edges rather than nodes as
the agents that perform computation, and, since we are
not interested in distinguishing the harmonic component,
it is not necessary for our purposes.

A. Hodge Decomposition on Graphs

From Hilbert’s Projection Lemma, we know that or-
thogonal projections are least-squares solutions to linear
equations. In particular, the orthogonal projection of a 1-
chain v ∈ C1(G) onto its curl-free component can be
found from the least-squares solution to the equation,

δ∗1(G)p = v . (6)

We use p ∈ C0(G) for the unknown variable because it
corresponds to pressure in fluid dynamics. The solution
is readily found to be,

p = (δ1(G)δ∗1(G))†δ1(G)v (7)

= L†0(G)δ1v (8)

where (·)† denotes the pseudoinverse operation. 3 Once p
is known, the curl-free component is reconstructed easily
as

vc = δ∗1(G)p . (9)

What is interesting is that consensus dynamics solve the
equation (6), as described in the following theorem:

3For the (matrix representation of the) graph Laplacian of a connected
graph, this is the inverse restricted to span{1}⊥. I.e., L† = (L +
1
n
11T )−1 − 1

n
11T .



Irrotational Flow Incompressible Flow Harmonic Flow

Fig. 1. Prototypical irrotational (left), incompressible (center), and harmonic (right) vector fields on R2.

Theorem 1: The forced Laplacian dynamics

ṗ = −L0(G)p+ δ1(G)v (10)

converge asymptotically to the solution (8) of (6) if
p(0) = 0.

Proof : The ODE (10) can be written as

ṗ = −gradp

1

2
||δ∗1(G)p− v||2 (11)

which are precisely the gradient descent dynamics needed
to solve (6) (Here, the norm is that induced by the
inner product (2)). Since the quadratic form is convex on
C0(G)/ null(L0(G)), gradient descent converges in that
quotient space regardless of initial condition, and since
p(0) = 0, the component of p in null(L0(G)) remains
zero for all time.

The important message is that the familiar Laplacian
dynamics, when forced, solve the normal equations, and
give a spatially-distributed way to asymptotically com-
pute p.

The divergence-free component of the 1-chain v, likewise,
is the projection of v onto image{δ∗1(G)}⊥. Hence it can
be found as,

vr = v − vc = v − δ∗1p (12)

from the same p.

IV. TWO-DIMENSIONAL MODELS

We now shift our attention from one- to two- dimensional
models of the environment; these described by simplicial
2-complexes. We will describe a method for generating
incompressible vector fields in their Rips Shadows as
Hamiltonian vector fields, and for computing a single
global streamfunction that generates these.

In this line of thought, agents are 2-simplexes. For the
case of air traffic control, this represents the idea that

v0

v0

v0

v0

v0
v5

v4

v3

v2

v1

Fig. 2. Given a planar simplicial 2-complex K (gray), G is the lower-
adjacency graph (bold lines) of the triangles. It is a subgraph of the dual
graph G (bold and dashed lines) to the 1-skeleton of K (thin solid lines),
denoted G∗. (Note that the five copies of v0 (circles) are identified.)

each simplex is a region of airspace under the authority
of a particular controller on the ground, and that it is the
job of these automated ground controllers to agree in a
distributed way how airplanes should be routed among
themselves.

We will assume that the graph G of the previous sections
is the lower-adjacency graph of the triangles of a pure
simplicial 2-complex – i.e., that, given a 2-complex K,
V (G) = Σ2(K), and (∆1,∆2) is an edge of G if and
only if ∆1^∆2 in K. Equivalently, G is the subgraph
of the dual graph to the 1-skeleton of K obtained by
deleting the “outside vertex” (v0 in Figure 2).

In what follows, we will produce an incompressible flow
over R(K) by computing a particular 0-chain over K.
To do this, we first introduce a family of local flows
defined on the individual k-simplices (this is the subject
of Section IV-A), and then compute a global 0-chain over
K (Section IV-C) representing a streamfunction.



A. Local vector fields

In this section we will describe the individual building
blocks for our global vector field. In particular, given a
0-chain over the vertices of a simplex, we will produce an
incompressible flow within the simplex. This is done by
using barycentric interpolation to create a streamfunction
over the simplex, and defining a Hamiltonian vector field
along this streamfunction.

Let x1, x2, x3 ∈ R2 be the vertices of a realization of
an oriented 2-simplex ∆ = [v0, v1, v2], Defining X =
[x1, x2, x3] ∈ R2×3, the barycentric coordinates b ∈ R3

of a point x ∈ R2 are the unique solution to the equations,

Xb = x (13)

1T b = 1 . (14)

It is also convenient to define the inverse matrices B1 ∈
R3×2 and B2 ∈ R3×1 by4[

X
1T

]−1
=
[
B1 B2

]
. (15)

Then, letting c0v0 + c1v1 + c2v2 be a 0-chain on ∆ and
c = (c0, c1, c2) ∈ R3, we define a scalar field φ(∆) :
R2 → R over the Rips Shadow of ∆ by

φ(∆)(x) = cT (B1x+B2) . (16)

We will call φ(∆) the local streamfunction corresponding
to the simplex ∆.

Finally, the Hamiltonian dynamics corresponding to φ(∆)
are defined, in Cartesian coordinates, as

ẋ = J gradφ(∆)

= JBT
1 c (17)

or in barycentric coordinates as,

ḃ = B1JB
T
1 c

, A(∆) (18)

where J ∈ R2×2 is the matrix representation of the
symplectic form (a, b) 7→ det([a, b]). 5

Lemma 1: The vector field (17) is divergence-free within
each triangle.

Proof : The vector field x 7→ JBT
1 c is constant in x, so

its divergence is zero.

4The inverse has a nice interpretation: bi is the ratio of the volume
of the simplex with x substituted for xi, to that of the original simplex.

5I.e., J =

[
0 1
−1 0

]
.

We will now use these per-simplex building blocks to
assemble a single global vector field on K.

B. A global vector field

Under the assumption that the interiors of the Rips
Shadows of all the simplices are disjoint, we define the
piecewise vector field ν : R(K) → R3 in barycentric
coordinates by,

ν(x) =
{
A(∆) if x ∈ R(∆) ∀∆ ∈ K . (19)

In the section that follows, we will show that this vector
field is globally divergence-free by demonstrating the
existence of a single global streamfunction. Moreover,
we will give a distributed algorithm to compute this
streamfunction.

Before proceeding, however, we would like to point out
that, already, (19) by itself constitutes a single hybrid
controller for the vehicles: Each vehicle looks up which
2-simplex ∆ it is in, requests the vector A(∆) from ∆,
and then follows that vector field.

C. The global stream function

We would like to construct a global streamfunction φ :

R(K)→ R of the form,

φ(x) =
{
φ(∆)(x) if x ∈ R(∆) ∀∆ ∈ K (20)

that produces the vector field 19 – for some global 0-
chain over K. In the following sections, we prove that
such a 0-chain exists, and give algorithms for computing
it.

1) Existence and Properties:

Definition 4.1: Given an oriented simplicial k-complex
K, a vector field (in barycentric coordinates) v : R(K)→
R3 agrees with a (k − 1)-chain v if, for each simplex
∆ ∈ Σk−1(K), the flux of v across R(∆) equals 〈v,∆〉.

Theorem 2: If v is a divergence-free 1-chain over G, then
there exists a 0-chain over K that induces a Hamiltonian
vector field agreeing with v on the Rips Shadow of K.

Proof : Since the edge flow v is in the cycle space of G
and G ⊂ G, it is in the cycle space of G. Then, by cycle-
cut duality, it is in the cut space of G∗, the 1-skeleton
of K. Consequently there exists a vector c′ in the vertex
space of G∗, or equivalently a 0-chain c over K, whose
coboundary is v.



2) Distributed computation of a global stream function:

a) Method 1: This first method serves to motivate the
second. As in section III-A, we are faced with the
problem of computing a 0-chain whose boundary best
approximates a given 1-chain; hence the global 0-chain
c ∈ C0(K) can be computed using the gradient descent
dynamics,

ċ = −L0(K)c+ δ1(K)v (21)

where now c is a 0-chain over the vertices of K rather
than of G, and the operators L0, δ1 likewise correspond
to K. An issue with this approach is that vertices of K
are shared by multiple agents – triangles – so an addi-
tional synchronization protocol is required for an actual
implementation. The next method avoids this messiness,
and is much more compatible with the reality that it is
triangles, not vertices, that represent agents.

b) Method 2: Within a single oriented 2-simplex ∆, the
problem of computing 0-chains with given boundaries is
straightforward. Let c ∈ C0(∆) and v ∈ C1(∆) be 0- and
1-chains over ∆ representing streamfunction values and
face fluxes, respectively. The problem is that of solving
the equation

δ∗1(∆)c = v, (22)

where δ1(∆) has the matrix representation

E3 ,

 0 1 −1
−1 0 1
1 −1 0

 . (23)

Since the matrix ET
3 has a 1-dimensional null space

spanned by 1, there is a family of solutions,

c = [δ∗1(∆)]†v + 1s (24)

where 1 ∈ C0(∆) is the 0-chain that assigns a 1 to each
vertex.6 What this means is that, if a single agent – a
triangle – knows its face fluxes, then it can independently
determine what the 0-chain over its vertices should be, up
to a constant. The coordination problem then is only to
determine that scalar s for each triangle – i.e., a 2-chain
over K, or, equivalently, a 0-chain over G.

What need the values s1, · · · , sN of the different triangles
satisfy? Namely, for two consistently-oriented simplices
indexed i and j, sharing a face that is the kth face of
simplex i and the lth face of simplex j,

si − sj = −1

6
[Dk(v̄i)−Dl(v̄j)] , wij (25)

6Note that the matrix representation of the pseudoinverse in (24) is
particularly simple: (ET

3 )† = 1
3
E3.

where v̄j ∈ R3 is the vector representation of the
restriction of the 1-chain v to the simplex j, and Dk(v̄)
is defined by,

[D0(v̄), D1(v̄), D2(v̄)]T = E3[v̄0, v̄1, v̄2]T . (26)

The skew-symmetric matrix W = [wij ]ij itself encodes
a 1-chain over G. The problem has thus been reduced to
computing a 0-chain s ∈ C0(G) – that with coefficients
s1, · · · , sN – given a 1-chain, w ∈ C1(G) – whose
coefficients come from W – that is to be its boundary.
Hence, s can be computed asymptotically by the system,

ṡ = −L0(G)s+ δ1(G)w (27)

much as before.

V. A COMBINED ALGORITHM

The two distributed computations described in the previ-
ous sections can be performed simultaneously within the
network, and stability properties are maintained. This is
the subject of the following theorem.

Theorem 3: The ODE[
ṡ
ṗ

]
=

[
−L0 −δ1Dδ∗1

0 −L0

] [
s
p

]
+

[
δ1D
δ1

]
v (28)

(where D is the linear operator that produces the 1-chain
w following (25)), converges asymptotically to a vector
in C0(G)×C0(G) that solves the equations (8) and (25).

Proof : The system matrix in (28), which we will refer
to as A, is block-upper-triangular, so its eigenvalues are
those of its diagonal blocks. Those in turn are graph
Laplacians, which are known to be positive semi-definite
(see e.g. [20]). Consequently, (28) converges asymptoti-
cally to a solution (s, p) provided it has no Jordan blocks
larger than 1 × 1 – a possibility that is ruled out since
image(δ1Dδ∗1) ⊥ null(L0).

VI. EXAMPLE APPLICATION: AIR TRAFFIC CONTROL

In this section, we explore the use of the the vector
fields obtained in the previous sections to direct air traffic
throughout an environment, in order to give a flavor
for how the preceding theory can be applied. The idea
will be to project control inputs onto the divergence-free
subspace, using consensus dynamics as in Section III-A;
this ensures that aircraft don’t “pile up” anywhere.

The aircraft are assumed to inhabit the nodes of the graph
G (which correspond to different regions of airspace), and
the edges encode which regions are adjacent. Let M ∈
C0(G) be a constant scalar field on G representing the



capacity of each vertex – i.e., the number of aircraft that
can safely share that airspace – and let m : R+ → C0(G)
be a time-varying 0-chain on G representing the number
of aircraft at each vertex. Assuming m(0) = M – i.e., that
the airspace is initially filled to capacity – we investigate
the general problem of directing the aircraft between them
while maintaining the safety constraint m(t) ≤M ∀t.

For this example, we restrict our attention to the case
when safety is ensured by maintaining m(t) = M ∀t
with equality. This is guaranteed by maintaining ṁ(t) =
0 ∀t, which in turn is satisfied by ensuring that the 1-
chain describing the air traffic is divergence free. Two
such problems naturally arise, from different projection
operations, described in the following sections.

3) Least-squares approximation: Suppose an operator
wishes to command the air traffic system with a particular
reference vector field. One way in which the system can
respond to this command is by providing the vector field
that approximates the commanded field optimally in a
least-squares sense while satisfying the incompressibility
constraint. This is precisely the projection problem of
Section III-A, so the problem can be directly solved in
a distributed fashion by the algorithm (10). We should
note that, in order to do this, the operator need only
communicate with two nodes per nonzero commanded
edge flow; this is encoded by the product δ1(G)v.

4) Smallest divergence-free flow containing a particu-
lar component: A second way in which an operator’s
commanded vector fields may be used is by finding the
smallest (in an l2 sense) divergence-free flow containing
the commanded flow v̄ as a component; this is the lowest-
energy safe holding pattern that guarantees a certain
amount of traffic on specified edges. In this case, we seek
a solution to the constrained optimization problem,

arg min
v∈C1(G)

1

2
||v||2 (29)

s.t. δ1(G)v = 0 Divergence-free (30)

〈v̄, v〉 = ||v̄||2 Contains component. (31)

Theorem 4: Let Pr denote the l2 projection operator
for the divergence-free subspace of C1(G), which is
computed by (10). Then for all v̄ 6= 0, the problem (29-
31) either has the solution

||v̄||2

〈Prv̄, v̄〉
Prv̄ (32)

or is infeasible.

Proof: If v̄ ⊥ ker δ1(G), then (31) requires v /∈
ker δ1(G). This contradicts (30), so in this case the

problem is infeasible. Hence, without loss of generality,
suppose v̄ /∈ (ker δ1(G))⊥.

Any vector v ∈ C1(G) can be decomposed uniquely
as v = vc + vr, with vc ∈ (ker δ1(G))⊥ and vr ∈
ker δ1(G). Furthermore, vc can be uniquely decomposed
as vc = vc,|| + vc,⊥, with vc,|| ∈ spanPrv̄ and
vc,⊥ ∈ (spanPrv̄)⊥; hence a unique decomposition vc =
vc,||+vc,⊥+vr exists, and by the Pythagorean Theorem,
||vc||2 = ||vc,||||2+||vc,⊥||2+||vr||2. By (30), ||vr||2 = 0,
and by (31), ||vc,||||2 = ||v̄||2. Only ||vc,⊥||2 remains free;
the quantity ||vc||2 is minimized when ||vc,⊥||2 = 0. To
summarize, we know that v = vc,|| with vc,|| ∈ spanPrv̄,
and that ||vc,||||2 = ||v̄||2. Only one element of the vector
space C1(G) satisfies these properties, and that is (32).

VII. NUMERICAL EXAMPLE

To demonstrate the character of the results obtained with
these methods, starting from a simplicial 2-complex K
with second lower-adjacency graph G, we computed the
divergence-free projection of a commanded 1-chain on
G with three nonzero elements, and the corresponding
0-chain on K and streamfunction on the Rips Shadow
of K; this is shown in Figure 3. Note that the large
commanded flow across a single face at the upper right of
the complex is propagated through the “jughandle” at the
upper right, and that the commanded flows lower in the
complex in less confined areas result in pairs of vortices
that have mostly local effects; nevertheless, small flows
are produced throughout the complex. These qualitative
characteristics are typical of the kinds of flows obtained:
Where necessary, flows propagate globally, but otherwise
most effects of a command are manifested locally. It
is the pressure field that propagates this information;
essentially, “shocks” are created across the faces where
large flows are commanded, and elsewhere the pressure is
smoothed across the complex by diffusion. The nonzero
commanded flow at the upper right demonstrates this
well; it creates a “shock” in the pressure field (black
triangle next to white triangle), which diffusion spreads
into linearly-decreasing pressure around the upper right
“jughandle.” Where vortices are produced, the stream-
function exhibits a pair of local extrema – a maximum for
a clockwise vortex and a minimum for a counterclockwise
one – as can be observed in the left part of the complex.
Vehicles then follow level sets of the streamfunction
around the environment.

VIII. CONCLUDING REMARKS

Given specified input flows, distributed consensus-like
algorithms were described that compute divergence-free



Fig. 3. Computational results are shown. Given a flow as input (first
plot; arrow sizes indicate flow magnitudes) on G, a circulant flow on G
and a streamfunction on the Rips Shadow of K are produced (second
plot). The Lagrange multipliers for the cycle-space projection (third
plot) are a close analogue of pressure in the dynamics of incompressible
fluids. The streamfunction is computed locally at each triangle, requiring
only the addition of a local offset (fourth plot), which is computed in
a distributed fashion.

approximations. Then, these discrete flows were “lifted”
to two-dimensional streamfunctions that generate vector
fields over the entire Rips Shadows of corresponding
simplicial 2-complexes. These flows mimic the behavior
of incompressible fluids, and, since vehicles following
them will never concentrate in any region, provide a
useful method for coordinating collision-free navigation
among large numbers of agents.
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