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Abstract— In order to control systems to meet subjective
criteria, one would like to construct objective functions that
accurately represent human preferences. To do this, we develop
robust estimators based on convex optimization that, given
empirical, pairwise comparisons between motions, produce both
(1) objective functions that are compatible with the expressed
preferences, and (2) global optimizers (i.e., “best motions”) for
these functions. The approach is demonstrated with an example
in which human and synthetic motions are compared.

I. INTRODUCTION

In control design, one typically first produces desired per-
formance specifications and then tries to design the control
laws in order to meet these specifications. However, if no
such specifications are given, or even worse, if they are
subjective, it is not clear what is meant by a successful
control design.

One specific motivating application in which this issue
arises is robotic puppetry (see e.g. [1], [2]), where mari-
onettes with actuated strings are asked to perform expressive
and aesthetically pleasing motions in the context of puppet
plays. Given a particular human motion, how should the
vastly-more-limited marionette move to not just mimic it
but also communicate the same emotional intent? Similar
questions arise whenever one wishes to control a system to
meet aesthetic, artistic, or subjective goals – whether it be
a puppet, an electronic musical instrument, or an acrobatic
aircraft (to imagine just a few examples). Other examples
include [3], [4], [5], [6], [7], [8], [9], and [10].

The role of human preferences in these problems is
unavoidable, in that a motion is aesthetically pleasing only
if we think it is pleasing. In this work we address techniques
both for using empirical measurements to learn cost functions
that are consistent with humans’ aesthetic preferences, and
for generalizing from these preference measurements to
determine a globally best alternative. For the example of the
marionette asked to mimic a human, this would mean finding
the one marionette motion that best captures the subjective
“essence” of a given human motion.

The idea of learning cost or rating functions from ex-
pressed preferences has been studied in the machine learning
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community, where it is known as preference learning. Here,
it is assumed that one is given a collection of pairwise
comparisons or two-alternative forced choices (i.e., for our
case, answers to questions of the form “Which of these two
options is better?”), and one seeks to generalize to other
hypothetical comparisons, often by constructing a rating
function from the choices. Pairwise comparison data has
the advantage over numerical scores (e.g., a scale of 1 to
10) of being less prone to batch effects, a psychological
phenomenon in which people’s rankings are only accurate
among objects compared at around the same time [11]. Other
work sharing this philosophy includes [12], [13], [14], [15],
[16], and [17].

Of the work on preference learning, ours is most closely
related to [11], [12], and [13], which find rating functions that
are large margin in a particular sense, by training a standard
support-vector machine (SVM) classifier on a related set of
instances. The method we propose – a Chebyshev estimation
scheme – is similar in that it also employs a constrained
optimization approach and in a particular limiting case can
be reduced to an equivalent SVM classification problem. Our
proposed approach differs from [11], [12], and [13] in that it
aims (1) to find not only a rating function but also a globally
best alternative, and (2) to solve only computationally-
efficient convex programs; which in turn motivates different
(and sometimes more efficient) problem formulations and
solutions.

In the remainder of this paper, we give a precise problem
formulation, and introduce two related optimization problems
in detail in both direct and instance vector expansion forms.
Then we show how in a particular limiting case a natural
generalization is equivalent to a certain SVM classification
problem, before demonstrating the approach with an example
involving the comparison of human and synthetic motions.

II. PROBLEM FORMULATION

At the core of preference learning is a collection of
empirical, pairwise comparisons. The underlying assump-
tion is that these comparisons reflect an underlying rating
function. Hence, given a sequence of pairwise comparisons
between points in an inner product space, we wish to find
(1) a real-valued rating function that is consistent with those
preferences, and (2) a global optimum to this function – the
best point in the metric space. By solving these two problems



we would have recovered what the underlying source for the
comparisons is.

Formally, let (X, 〈·, ·〉) be the inner product space, and
S = {(x1i , x2i )}Ni=1 = {s1, · · · , sN} ⊂ X ×X the sequence
of comparisons; a pair (x1i , x

2
i ) appears in the sequence

S if and only if x1i is preferred to x2i . The preference
graph G = (V, S) corresponding to the comparison se-
quence S is the directed graph whose vertex set V =
{x11, x21, · · · , x1N , x2N} ⊂ X is the collection of all unique
points that have been compared, and whose edge set is S.
We will index the vertices as V = {x1, · · · , xM}, where
M ≤ 2N is the cardinality of V .

The first item we seek, given some assumptions about its
parametric form, is a function f : X → R such that

f(x1) ≤ f(x2)⇔ (x1, x2) ∈ S . (1)

That is, we adopt the convention that lower scores are better;
hence we will refer to f as a cost function. Moreover, we
would like f to optimize a particular smoothness criterion
which we assume will make it generalize well to other points
in X besides the ones we have seen in S.

The second item we seek is a global minimizer to f ,

x̄ , argmin
x

f(x) (2)

which represents the best possible point in the inner product
space.

Crucially, we would like to be able to determine f and x̄
entirely by convex optimization – both so that the resulting
problems are computationally efficient, and to ensure that
any minima we find are in fact global optima. Although the
SVM methodology employed in e.g. [13] and [11] finds f as
the solution to a convex program, its use of the kernel trick
introduces nonlinearities that prevent the determination of x̄
by convex programming. Yet, without the kernel trick, and
using the SVM approach, one arrives at linear cost functions
that have no unique minima at all. What we will present in
this paper is instead a set of convex programs that provide
a useful compromise between these extremes, and which
only reduce to an SVM classification problem in a particular
limiting case. These will allow us to entertain the idea of a
unique “best” point in X , and at the same time determine
what it is by convex programming.

III. METRIC COSTS

Colloquially, when comparing various alternatives, we
often speak of options as being “closer to what we would
like,” or of being “far from perfect.” Motivated by this
everyday use of geometric language, in [18] we considered
metric costs, which have the form,

f(x) = ||x− x̄||2 . (3)

In short, it is assumed that there exists some single best point
x̄ in X , and one alternative is preferred over another if and
only if it is closer to that point.

What does an individual response (x1, x2) tell us about
the location of x̄? Simply, the following are equivalent:

1) (x1i , x
2
i ) ∈ S

2) f(x1) ≤ f(x2)
3)
〈
x2i − x1i , x̄

〉
− 1

2

〈
x2i − x1i , x2i + x1i

〉
< 0.

In words, each comparison constrains x̄ to lie within a
particular halfspace of X . Defining,

di , x2i − x1i (4)

µi ,
1

2

(
x1i + x2i

)
(5)

bi , 〈di, µi〉 , (6)

the totality of what we know, then, about where x̄ might
lie is summarized by the inclusion over all the comparison
halfspaces,

x̄ ∈ P ,
N⋂
i=1

{x | 〈di, x〉 − bi < 0} . (7)

The set P , if it is bounded, is a polytope in X . In [18],
we stated this system of inequalities and gave an asymptotic
observer that converges to x̄ under certain assumptions.
Here, we ask another question: Out of all the points in this
polytope, which is “best?”

When P is bounded, we propose to select x̄ as the incenter
or Chebyshev center of the polytope,

x̄ = argmin
x

max
i

1

||di||
(〈di, x〉 − bi) , (8)

which is the point that is maximally far away from the
closest constraint plane, as illustrated by Figure 1. In other
words, when P is nonempty, x̄ is the point that can be
perturbed as much as possible without contradicting any of
the preferences expressed in S; and when P is empty, it is
the “compromise” point whose worst constraint violation is
minimal.

In more detail, what Figure 1 portrays are two examples
for the case when X = R2. Shades of gray indicate the num-
ber of violated constraints (points in darker regions violate
more constraints), and discontinuities in the derivative of the
piecewise-linear function x 7→ maxi

1
||di|| (〈di, x〉 − bi) are

indicated by dashed lines. In the first example (top), P 6= ∅
(white region), and x̄ is its incenter, the point maximally
far away from the closest of the constraint surfaces (thin,
solid lines) - i.e., it is the center of the largest inscribed
sphere (thick, solid curve). In the second example (bottom),
P = ∅, and the resulting optimum, x̄, is the point whose
worst constraint violation is minimal.

Note that with the definition (8), if the constraints are
feasible (i.e., if P 6= ∅), then x̄ ∈ P . This can be viewed
as minimizing the ∞-norm of the vector of constraints.
Additionally, x̄ ∈ aff

{
x11, x

2
1, · · · , x1N , x2N

}
and hence we

need only solve for the coefficients of an expansion in
terms of this basis (see Theorem III.1). Furthermore, this
minimization problem has a sensible solution even when P
is empty; it is the point whose worst (i.e., largest) constraint
violation is as small as possible.



x̄

x̄

Fig. 1. The Chebyshev center of a polytope (top), and its natural
generalization in the infeasible case (bottom).

The minimization problem (8) can be rewritten in epigraph
form as,

(z̄, x̄) = argmin
(z,x)

z (9)

s.t. ||di||z ≥ 〈di, x〉 − bi

which is always feasible (but possibly unbounded), and
satisfies z̄ > 0⇐⇒ P = ∅. This is a linear program, which,
if dim(X) is not too large, can be solved directly by general-
purpose codes. In order to work with very-large or infinite-
dimensional vectors like motions, however, we will require
the instance vector expansion form described in section III-
A.

Theorem III.1 If (8) has a global minimizer, then it has a
global minimizer in aff

{
x11, x

2
1, · · · , x1N , x2N

}
.

Proof : Let x be a global minimum to (8), and x̄ be the
projection of x onto aff

{
x11, x

2
1, · · · , x1N , x2N

}
; i.e., x̄ = x+

δ with δ ⊥ span{d1, · · · , dN}. Then for all i ∈ {1, · · · , N},
since 〈di, δ〉 = 0 and by linearity of the inner product,

1
||di|| 〈di, x̄〉 − bi = 1

||di|| 〈di, x〉 − bi, and hence the value
of the objective function in (8) is the same at either x or x̄.

A. Instance Vector Expansion

Since x̄ ∈ aff
{
x11, x

2
1, · · · , x1N , x2N

}
, the optimization

problem (8) can be solved as a finite-dimensional problem
even when X is not finite-dimensional, by expanding x̄
in terms of a finite-dimensional basis, as described by the
following theorem:

Theorem III.2 The point

x̄ =

N∑
k=1

c̄kdk + x∗ (10)

solves the optimization problem (8), where

x∗ = argmin
x

{
||x||2 | x ∈ aff

{
x11, x

2
1, · · · , x1N , x2N

}}
,

(11)
and c̄ is found by solving

(z̄, c̄) = argmin
(z,c)

z

s.t. Gddc−Dz ≤ β , (12)

with D = (||d1||, · · · , ||dN ||), β ∈ RN defined by

βi , 〈di, µi〉 (13)

and Gdd ∈ RN×N being the Gramian,

Gdd ,

 〈d1, d1〉 · · · 〈d1, dN 〉
...

. . .
...

〈dN , d1〉 · · · 〈dN , dN 〉

 . (14)

Proof : Defining x∗ by (11), one can write any x in
the affine span of the data in the form (10). Substituting
the expansion (10) into (9) and noting that by Hilbert’s
Projection Theorem x∗ ⊥ di for all i ∈ {1, · · · , N}, one
obtains (12).

Remark III.1 We also note at this point that (10) can be
written,

x =

M∑
k=1

(indegc(xk)− outdegc(xk))xk + x∗ (15)

,
M∑
k=1

ξkxk + x∗ (16)

by treating c as a vector of edge weights to the preference
graph, and denoting the weighted in- and out-degrees of a
given node xk by indegc(xk) and outdegc(xk) respectively.
Precisely,

indegc(xk) ,
∑

i|x2
i=xk

ci (17)

outdegc(xk) ,
∑

i|x1
i=xk

ci . (18)

Remark III.2 Moreover, β can be written,

βi = eTi G
µdei , (19)



where Gµd ∈ RN×N is the cross-Gramian

Gµd ,

 〈d1, µ1〉 · · · 〈d1, µN 〉
...

. . .
...

〈dN , µ1〉 · · · 〈dN , µN 〉

 (20)

and ei denotes the i-th element of the natural basis.

Remark III.3 Note that this problem depends only on inner
products of the various di and ui vectors, and hence the
problem can be solved even when X is infinite-dimensional.
Precisely, N(N+1)

2 + N2 ∼ O(N2) inner products must be
computed to build the matrices Gdd and Gµd, where N
is the number of comparisons. Alternatively, the relevant
matrices can also be produced directly from inner products
of elements of S, as

Gdd = K22 −K21 −K12 +K11 (21)

Gµd =
1

2
(K22 +K21 −K12 −K11) (22)

where each matrix Klm ∈ RN×N is defined by

Klm
ij =

〈
xli, x

m
j

〉
(23)

and can be built by indexing into the single Gramian (or
kernel) matrix K ∈ RM×M defined by

Kij = 〈xi, xj〉 . (24)

Moreover, D in equation (12) can now be expressed as D =

(
√
Gdd11 ,

√
Gdd22 ,

√
Gdd33 , · · · ,

√
GddNN ).

Finally, x̄ can be reconstructed using (10) and

x∗ =

M∑
i=1

αixi (25)

α =
1

1TK†1
K†1 (26)

where K† denotes the Moore-Penrose pseudoinverse of K,
and 1 = (1, 1, · · · , 1) ∈ RM .

In particular, the costs of the presented instances can be
reconstructed as,

f(xk) = (ek − ξ − α)TK(ek − ξ − α) (27)

where ξ is related to c by (15), (17), and (18).

B. Unbounded Case: The minimax-rate problem
When P is nonempty but unbounded, the minimization

problem (8) is ill-posed; one can choose x with arbitrarily
large norm, and in the process make maxi

1
||di|| (〈di, x〉− bi)

arbitrarily small. Practically, this corresponds to the situation
in which people would prefer some aspect of a motion not
in a particular amount, but rather to the largest (or smallest)
degree possible. Hence in the case of unbounded P we ask
a slightly different question: What is the “point at infinity,”
or direction, that is best? More precisely, what we seek in
this case is a unit vector

v̄ = argmin
v∈X|||v||=1

lim
t→∞

1

t

[
max
i

1

||di||
(〈di, tv〉 − bi)

]
(28)

= argmin
v∈X|||v||=1

max
i

1

||di||
〈di, v〉 (29)

or equivalently,

(p̄, v̄) = argmin
v∈X,p∈R

p (30)

s.t.

{
||di||p ≥ 〈di, v〉 ∀i ∈ {1, · · · , N}
||v||2 ≤ 1

.

The interpretation is that, although there exists no best point
x̄ ∈ X because constraints can be satisfied arbitrarily well,
there does exist a direction v ∈ X along which constraint
satisfaction improves most rapidly.

As before, an instance vector expansion is possible:

Theorem III.3 Letting v =
∑N
k=1 ckdk, the optimization

problem (30) is equivalent to

(p̄, c̄) = argmin
(p,c)

p (31)

s.t.

{
Gddc−Dp ≤ 0

cTGddc ≤ 1

with the matrices Gdd and D as defined in the previous
subsection.

Proof : The proof takes the form of Theorem III.2’s.

The problem (31) is a finite-dimensional second-order
cone program (SOCP), which can be solved efficiently.

The cost function for the unbounded case arises from a
similar limit process to (29), as

f(x) = lim
t→∞

(
1

t
||x− vt||2 − t

)
(32)

= lim
t→∞

[
1

t

(
||x||2 − 2 〈x, vt〉+ ||vt||2

)
− t
]

(33)

= −2 〈x, v〉 (34)

which can be evaluated at the instances as,

f(xk) = −2eTkKξ . (35)

1) QP Form and Relation to SVMs: When intP is
nonempty - as is almost always true in the unbounded case
- the minimization problem (29) can be rewritten as an
equivalent quadratic program (QP), which will make the
relationship to the usual SVM approach very clear. In fact,
(29) is equivalent to a particular SVM classification problem
(which differs from but is related to that studied in e.g. [11]
and [13]).

Defining,

w =
1

p
v (36)

and restricting our attention to negative values for p (since
when intP is nonempty, p∗ < 0), we note that for p < 0

argmin p = argmax p2 = argmin
1

p2
= argmin ||w||2 .

(37)
Additionally, the constraints in (30) can be replaced by,〈

di
||di||

, w

〉
≥ 1 (38)



which results in the standard unbiased SVM problem,

w̄ = argmin
w
||w||2

s.t.

〈
di
||di||

, w

〉
≥ 1 ∀i ∈ {1, · · · , N} . (39)

This is equivalent to (30) in the unbounded case except when
intP = ∅; then, since p̄ = 0, w̄ from (36) is undefined, but
the solution to the SOCP problem (31) nevertheless exists.

The minimax-rate problem (39) differs from the SVM
problem considered in e.g. [11] and [13] by the factor of

1
||di|| included in each constraint. The difference is that
whereas the standard SVM approach attempts to classify
differences using a maximum-margin separating hyperplane,
the minimax-rate approach finds the direction that maximizes
the rate of constraint satisfaction.

This is illustrated in Figure 2. Here, a number of
uniformly-randomly selected points in [−1, 1] × [−1, 1] ⊂
R2 are compared according to a point at infinity (i.e., a
linear cost function) (dotted), and both the traditional SVM
(dashed) and the minimax-rate (solid) approaches are used
to produce estimates of this direction from the comparisons.
From the difference-classification point of view (top), one
wishes to separate the vectors {di}Ni=1 (displayed as “o”s)
from the vectors {−di}Ni=1 (displayed as “*”s). From the
minimax-rate point of view (bottom), one wishes to find the
direction that maximizes the rate of constraint satisfaction
(the numbers of violated constraints are represented by
shades of gray; the white region is feasible). The traditional
SVM solution separates the positive from the negative dif-
ferences with a larger margin (top), but the minimax-rate
solution stays as far from the edge of the constraint cone as
possible (bottom).

IV. AMOEBAS AND HUMANS

To understand the comparison of higher-dimensional ob-
jects, and, in particular, motions, an experiment was per-
formed in which an audience of 25 people was asked to
perform pairwise comparisons of different motions of a
computer-animated amoeba, relative to the motion-captured
movement of a human who danced the bhangra. An example
of one such question is illustrated in Figure 4. In this manner,
a preference graph was generated as before, with 12 vertices
(the amoeba motions) and 20 edges; this is shown in Figure
3.

Inner products between the various amoeba motions
were computed by rasterizing the motions to binary
videos, blurring each frame of the result, and computing
the standard Euclidean inner product of these (extremely
large) [Frame Width]×[Frame Height]×[Number
of Frames]-dimensional vectors. We note that the sheer
size of this representation highlights the advantage of the
instance vector expansion described in Section III-A, without
which the optimization problem simply could not be realis-
tically solved.

The minimization problem (12) with the resulting data
turns out to be unbounded and hence we again find an opti-
mal direction via (10). We obtain the coefficient expansion
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Fig. 2. Maximum-margin vs. minimax-rate cost functions.
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Fig. 3. The preference graph corresponding to the amoeba experiments.



Fig. 4. Each question took the form, “Which of the two ‘amoebas’ (bottom)
looks more like the [motion capture data from a] human dancer (top)?”

for the optimal direction,

v̄ =

M∑
k=1

ξkxk (40)

where

ξ = 103( 1.4918, −3.6556, −0.1390, 0.3113,
−1.1243, −0.1771, 2.6335, 0.5878,

1.8362, −1.7319, −0.2999, 0.2672 ) .

What this means is that, in order to look as much like it
is dancing the bhangra as possible, an amoeba should as
its first priority aspire to be as much like amoeba 7 (ξ7 =
2.6335) and as dissimilar from amoeba 2 (ξ2 = −3.6556) as
possible, and that it should to a lesser extent model itself after
amoebas 1 and 9 (ξ1 = 1.4918, ξ9 = 1.8362) while avoiding
the aesthetically unappealing moves of amoebas 5 and 10
(ξ5 = −1.1243, ξ10 = −1.7319). Note here that, although
this does not explain why, psychologically, e.g. amoeba 7 is
preferred to amoeba 2 – i.e., we do not obtain a collection of
characteristics that can be decoupled from the motions of the
empirical amoeba moves – it does produce both a consistent
cost structure, and an estimate for an amoeba motion that
will be preferred to all others in the larger space of motions.

V. CONCLUDING REMARKS

In this work, we investigate the problem of motion prefer-
ence learning under the assumption of an underlying metric
cost model; here, the alternatives being compared are points
in a metric space, and human judges are assumed to prefer
one point to another if and only if it is closer to some
fixed but unknown best alternative that they may not have
been shown. This assumption appears to be a good one for
the example considered and the features chosen, in that the
feasible set P in this case is nonempty.

Based on the metric cost assumption, a Chebyshev es-
timator was given for the best point for the case when P
is bounded, and a natural generalization, the minimax-rate
estimator, was developed for when P is unbounded. In the
first case, the solution was found, with an efficiency rivaling

standard quadratic SVMs, as the solution to a linear program;
and in the second case the problem was shown to in fact
reduce to a particular SVM classification problem.

In order that the estimators for the bounded and unbounded
cases be applicable to situations in which the compared alter-
natives inhabit high- or infinite- dimensional metric spaces –
as is the case for motion signals – the optimization problems
were additionally given in an instance vector expansion
form, which results in optimization problems whose size is
proportional not to the dimensionality of the metric space,
but only to the number of comparisons available.

In all cases, optimal cost functions and points/directions
were found efficiently by convex programming. The result is
an efficient minimax estimator for the best possible alterna-
tive.

REFERENCES

[1] M. Egerstedt, T. Murphey, and J. Ludwig, Motion Programs for Puppet
Choreography and Control, pp. 190–202, Springer-Verlag, April 2007.

[2] Elliot Johnson and Todd Murphey, “Dynamic modeling and motion
planning for marionettes: Rigid bodies articulated by massless strings,”
in Robotics and Automation, 2007 IEEE International Conference on,
2007, pp. 330–335.

[3] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John T. Riedl, “Evaluating collaborative filtering recommender sys-
tems,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 5–53, 2004.

[4] Gediminas Adomavicius and Alexander Tuzhilin, “Toward the next
generation of recommender systems: A survey of the state-of-the-art
and possible extensions,” IEEE Trans. on Knowl. and Data Eng., vol.
17, no. 6, pp. 734–749, 2005.

[5] Miquel Montaner, Beatriz López, and Josep Lluı́s De La Rosa, “A
taxonomy of recommender agents on the internet,” Artif. Intell. Rev.,
vol. 19, no. 4, pp. 285–330, 2003.

[6] Louis Leon Thurstone, The measurement of values, University of
Chicago Press, 1959.

[7] Ralph Allan Bradley and Milton E. Terry, “Rank analysis of incom-
plete block designs: The method of paired comparisons,” vol. 39, pp.
324–345, 1952.

[8] S. N. Afriat, “The construction of utility functions from expenditure
data,” vol. 8, no. 1, pp. 67–77, Feb 1967.

[9] H. R. Varian, “The nonparametric approach to demand analysis,” vol.
50, no. 4, pp. 945–973, Jul 1982.

[10] A. Restificar and P. Haddawy, “Inferring implicit preferences from
negotiation actions,” in Proc. Int’l Symposium on Artificial Intelligence
and Mathematics, Jan 2004.
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