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One of the main motivating forces behind the rapidly emerging theory of decentral-
ized, cooperative control is the idea that we can deploy large collections of agents
over wide spatial domains to solve otherwise intractable surveillance and monitoring
problems. However, it is inevitable that in such networks, the performance will de-
teriorate over time as resources, such as battery power, are depleted. In this paper,
we address this problem by investigating methods to measure the health of a network
in a distributed fashion.

1 Introduction

In this paper we consider the problem of establishing certain properties of a net-
worked system associated with its health. Here, the health (or degradation thereof)
manifests itself through a reduced response rate of the individual nodes. As such,
the health monitoring problem involves solving a partial system identification prob-
lem, where the overall interaction topology of the network is known, while the node
weights are not.

Other definitions of the networked health monitoring problem are for instance
given in [5, 8, 9], while various aspects of the network system identification problem
are discussed in [1, 2, 11, 16]. In fact, the contribution of this paper is in part the
formulation of the health monitoring problem as a structured system identification
problem. Specifically, we will assume that the health of an individual agent is
reflected by the gain (e.g. the available power) associated with that agent’s linear,
nearest neighbor control law.
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The outline of this paper is as follows: In Section 2 we introduce the weighted
linear consensus protocol that describes the interaction dynamics. Following this,
we identify two classes of networked health monitoring problems, in Sections 3
and 4 respectively. In Section 3, the global network health monitoring problem is
introduced and solved in closed form from both instantaneous measurements and
sampled data. In Section 4, the individual health monitoring problem is introduced.
This problem does in general not have a unique solution. Finally, the conclusions
are given in Section 5.

2 Linear Consensus Protocols with Unknown Weights

2.1 Linear Consensus Protocols

Consider a system of n networked agents connected in an undirected graph G, where
each agent i ∈ {1, 2, . . . , n} has state xi ∈ R

p. Under the standard, linear consensus
protocol (e.g. [3, 4, 7, 10, 12, 13, 15, 17]), the ith agent’s dynamics may be written
as

ẋi =
∑

j∈Ni

(xj − xi) (1)

where Ni is the set of all agents in the neighborhood of – or adjacent to – agent i,
given a static, undirected network topology defined through the graph G.

We note that (1) is decoupled along each dimension of xi and, as such, we can
simply assume that xi ∈ R without loss of generality. Under this assumption we
can rewrite (1) to obtain,

ẋ = (A− D)x = −Lx, (2)

where x = [x1, . . . , xn]T , A and D are G’s adjacency and degree matrices, respec-
tively, and L is the Graph Laplacian. It is known from algebraic graph theory (e.g.
[6]) that if G is connected, the smallest eigenvalue of L is zero and all others are
strictly positive. Additionally, N (L) = span(1). Thus, as shown in [7, 13, 15], this
system is critically stable and converges to x1 = x2 = . . . = xn = c, where c is the
time-invariant centroid, given by

c =
1

n
1T x. (3)

2.2 Health Monitoring

As an agent’s power level decreases or it accumulates damage, we assume that it
will be able to exert less control effort and so react more slowly to changes in its
environment. To represent this, we introduce a constant factor, γi, to the dynamics
described in (1), which represents the health of agent i. Healthy agents – like robots
with full batteries and no mechanical problems – move faster than unhealthy ones
and have larger healths. With this modification, (1) is replaced by

ẋi = γi

∑

j∈Ni

(xj − xi), (4)
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or equivalently
ẋ = −ΓLx, (5)

where Γ , diag(γ1, . . . , γn) is the health matrix of the network. It is shown in [7]
that this system converges to the weighted centroid

cΓ =
1

tr(Γ−1)
1T Γ−1x (6)

which is also invariant in time.
Further suppose that a single agent, which we may think of as “doing the

health monitoring,” is given access to the state of one other agent, whose state it
may monitor relative to its own. Without loss of generality we may say that the
last agent monitors the first agent, in which case we have access to the signal

y = x1 − xn = [ 1 0 . . . 0 −1 ]x. (7)

We are now interested in whether it is possible to determine Γ for the system
defined by (5) and (7) given,

1. the measurement signal y, and

2. known, static (or piecewise static), connected network topology (i.e., L is
given).

2.3 Alternate Interpretations

The determination of unknown consensus gains is equivalent to a number of analo-
gous physical, signal processing, and communications problems:

1. Sensor networks: A network of sensors may be deployed to measure a
single underlying quantity and arrive at a consensus – e.g., the sensors are
thermometers distributed over a region in which the temperature is assumed
to be constant, and we wish to know what that temperature is. Especially in
a heterogeneous network, we may expect some sensors to be more accurate
than others, in which case we would like them to influence the consensus
point more than the less accurate nodes. From (6), we can achieve this by
reinterpreting the health γi of agent i as the reciprocal of the accuracy, ai, of
that agent; i.e., ai = 1/γi. In this case, we may think of the problem not as
“health monitoring” but instead as “accuracy monitoring.”

2. RC electrical networks: If we replace each edge of the graph G by a 1Ω
resistor, and connect a capacitor between each vertex and a common ground,
then we arrive at an electrical system whose dynamics are identical to those
of weighted linear consensus, where the capacitances – which are unknown –
are analogous to the reciprocals of the consensus gains; i.e., Ci = 1/γi.

1

3. Broadcast protocols: One may view each γi most generally as some datum
that agent i would like every other agent to receive.

1This neglects units. More generally, if capacitors are connected by resistances R, then γi =
1/(RCi) and has units of angular frequency.
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2.4 Egocentric Coordinates

The nth-order system given by (5) and (7) can always be expressed by a smaller
(n−1)th-order system which we introduce in this section. We do this by expressing
the states of the first n − 1 agents in the egocentric coordinates of the last agent,
which performs the health monitoring. To begin, we block-partition (5) as,

[

ẋv

ẋn

]

= −

[

Γm 0

0 γn

] [

Lm Lv

LT
v lnn

] [

xv

xn

]

(8)

where xn ∈ R is the state of the nth agent, xv ∈ R
n−1 is the vector of the first

n − 1 agents’ states, and the other quantities are defined so as to have compatible
dimensions, as in [14]2.

Next, we define a state vector w ∈ R
n−1 so that w represents xv in agent n’s

egocentric coordinate frame; i.e.

w , xv − 1xn (9)

and the measurement y that agent n makes of agent 1 can be expressed in terms of
w simply as

y = [1, 0, . . . , 0]w = cw. (10)

From (8) and (9),

ẇv = ẋv − 1ẋn

= (−ΓmLmxv − ΓmLvxn) − 1
(

−γnLT
v xv − γnlnnxn

)

=
(

−ΓmLm + γn1LT
v

)

xv + (−ΓmLv + γnlnn1)xn

=
(

−ΓmLm + γn1LT
v

)

w +
(

−ΓmLm1 + γn1LT
v 1− ΓmLv + γnlnn1

)

xn (11)

and since Lm1 = −Lv, L
T
v 1 = − deg(n), lnn = deg(n), then (11) becomes

(

−ΓmLm + γn1LT
v

)

w + (ΓmLv − γn deg(n)1 − ΓmLv + γn deg(n)1)xn

=
(

−ΓmLm + γn1LT
v

)

w = AΓw (12)

where AΓ is defined by the above. (Note that AΓ = AT
Γ ≺ 0, as shown in [14].)

We thus obtain a new, autonomous linear system whose dynamics may be
written as

ẇ(t) =
(

−ΓmLm + γn1LT
v

)

w(t) = AΓw(t) (13)

y(t) = cw(t) (14)

In fact, this is the system with which we will be concerned in this paper.

2That is, Lv ∈ R
n−1, lnn ∈ R, and Γm, Lm ∈ R

(n−1)×(n−1).
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3 Global Health Monitoring

One question we may ask is, “How healthy is the network as a whole?” A natural
definition of such a global network health measure, JΓ, is as a linear combination of
individual agent healths, weighted by each agent’s degree (which we may take to
represent the “importance” of an agent in the network):

JΓ ,

n
∑

i=1

γi deg(i). (15)

This definition agrees with the intuition that, if an agent which communicates with
few other agents has low health, this will affect the network less adversely than if
the health of an agent which communicates with many others is low.

3.1 Instantaneous Global Health Monitoring

Theorem 1. It is possible to determine JΓ instantaneously from the measurement
signal y as long as (AΓ, w0, c) is minimal.3

Proof. Let y(i) be the ith derivative of y(t) at t = 0, which we can in principle

measure, and let Y and ~Y be the Hankel and shifted Hankel matrices of these
derivatives: 4 5

Y =











y(0) y(1) . . . y(n−2)

y(1) y(2) . . . y(n−1)

...
...

y(n−2) y(n−1) . . . y(2n−3)











~Y =











y(1) y(2) . . . y(n−1)

y(2) y(3) . . . y(n)

...
...

y(n−1) y(n) . . . y(2n−2)











(16)

We can factor Y and ~Y as,

Y = O[x(0), . . . , x(n−2)] (17)

~Y = OA[x(0), . . . , x(n−2)] (18)

where A is the system matrix for an arbitrary similar realization, [x(0), . . . , x(n−2)]
contains the 0, . . . , (n−2)th derivatives of the state in this realization, and O is this
realization’s observability matrix.

Now, consider the similar system in observability canonical form. We know
that the observability matrix in this form is the identity (for SISO) systems. So
long as (AΓ, w0, c) is minimal, Y is invertible and hence, we get

A = O−1~Y Y −1O = ~Y Y −1. (19)

3Here, w0, the initial state, takes the place of the usual control matrix b.
4The beginning of this proof follows the same development as Section 3 of [18], which establishes

a connection between Networked Health Monitoring and Symmetric Symmetrizers.
5Recall that our system is (n − 1)th order
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This matrix is similar to AΓ and is of the form

A =

















0 1 . . . 0

0 0
. . . 0

...
...

0 . . . 0 1
−an−1 −an−2 . . . −a1

















(20)

Thus, for some invertible T , 6

AΓ = TAT−1 (21)

Since the trace of a matrix is preserved under similarity transformations, this implies
that

tr(AΓ) = tr(A) = −a1, (22)

where

tr(AΓ) = tr
(

−ΓmLm + γn1LT
v

)

= −
n−1
∑

i=1

γi deg(i) +
n−1
∑

i=1

{

−γn if i ∈ Nn

0 otherwise

= −
n−1
∑

i=1

γi deg(i) − γn deg(n)

= −JΓ. (23)

Hence,
JΓ = − tr(AΓ) = − tr(A) = a1. (24)

Since we know A from instantaneous measurement of y(·) at t = 0, we also instan-
taneously know JΓ, the global health.

Thus, provided (AΓ, w0, c) is minimal, global health monitoring is possible by
having a single agent, which need not know its own health, watch just one other
agent in the network. (For a discussion of network minimality, see for example [14].)

3.2 Discrete-Time Global Health Monitoring

The method described in the proof of Theorem 1 establishes that in principle global
health monitoring is possible, but since it relies on differentiating y(t) many times,
it will generally not itself be a practical means to do so. In this section, we describe
how to find the global network health instead from sampled data.

The discrete-time system obtained by sampling the output of (13) with a
sampling period τ is given by

wk+1 = (eAΓτ )wk = Φ̄τwk

yk = cwk, (25)

6In fact, T = O(AΓ, c)−1.
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where wk+1 , w(kτ), yk , y(kτ), and k ∈ {0, 1, 2, . . .}. As in the continuous-time
case, we construct Hankel matrices of these samples,

Yτ =











y0 y1 . . . yn−2

y1 y2 . . . yn−1

...
...

yn−2 yn−1 . . . y2n−3











~Yτ =











y1 y2 . . . yn−1

y2 y3 . . . yn

...
...

yn−1 yn . . . y2n−2











(26)

and find the discrete-time observability-canonical-form transition matrix

Φτ = ~YτY −1
τ , (27)

where Φτ is of the form,

Φτ =

















0 1 . . . 0

0 0
. . . 0

...
...

0 . . . 0 1
−αn−1 −αn−2 . . . −α1

















. (28)

Since the matrix exponential has the property that, for some matrix Z, det eZ =
etr Z , then

det Φτ = det Φ̄τ = det eAΓτ = etrAΓτ = e−JΓτ (29)

and

JΓ = −
1

τ
ln |Φτ | = −

1

τ
ln [(−1)nαn−1]. (30)

In this manner, the global network health can be obtained from samples of the
output.

3.3 Interpretations of the Global Network Health

State-Space Volumes

The relationship in (29) between JΓ and |Φτ | gives an interpretation of the global
network health as the reciprocal of the time constant with which volumes in the
state-space “shrink.” For instance, suppose it is known that in the worst case
the initial condition w0 will lie on some closed surface S0 in state-space – say, an
(n− 1)-ball – enclosing volume V0, and that all points on S0 evolve by (12) to give
a time-varying surface S(t) enclosing volume V (t). Then, from (29),

V (t) = V0e
−JΓt ∀t ≥ 0. (31)

Thus V (t) obeys a first-order model, and we know from the global health alone that
the volume of state space which may contain the state decreases at a known rate.
Moreover, this rate increases monotonically with increased global health.
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System Poles

The global network health can also be understood in terms of the eigenvalues of the
system matrix AΓ. Since AΓ is trivially similar to its Jacobi form ΛΓ, we have

JΓ = − tr(AΓ) = − tr(ΛΓ) = −
n−1
∑

i=1

λi. (32)

This observation makes clear why JΓ is available from the output signal y: It is the
sum of the poles of the Laplace transform of the output, L{y}.

4 Individual Health Monitoring

The global health measure JΓ does not provide any information about how well the
individual agents are performing. A natural question to ask is thus: Is knowledge
of y(.), L, and γn sufficient for agent n to deduce all of the other agent healths
γ1, . . . , γn−1? It turns out that in general the answer is no, and we will show this
by counterexample by demonstrating that there is more than one health matrix
that can explain the measured output.

In the context of this paper, we will define a plausible health matrix Γ̃ as any
diagonal matrix such that the system (AΓ̃, c) is similar to the system (AΓ, c), which
we call the true system. The significance of this is that initial conditions exist for
the plausible system such that it produces the same output y as the true system.

Consider the observability canonical form realization of the true system, (13).
This realization has system matrix (20), and is related to the system in natural
coordinates by (21), i.e. z = O(AΓ, c)w. It has dynamics

ż = Az = O(AΓ, c)AΓO(AΓ, c)−1z

y = [ 1 0 . . . 0 ]z (33)

Next suppose that we can find a plausible health matrix Γ̃, such that the
system (AΓ̃, c) has the same system matrix A in observability canonical form. The
state vector w̃ for this system is likewise related to z by z = O(AΓ̃, c)w̃, and hence

z = O(AΓ, c)w = O(AΓ̃, c)w̃,

and hence

w̃ = O(AΓ̃, c)−1O(AΓ, c)w = Mw, (34)

where M is defined by the above. Therefore, if we choose the initial condition
w̃0 = Mw0 for the plausible system, then its output ỹ will match that of the true
system, i.e.

y = ceAΓtw0 = ceM−1A
Γ̃

Mtw0 = cM−1eA
Γ̃
tMw0

= cO(AΓ, c)−1O(AΓ̃, c)eA
Γ̃
tw̃0 = ceA

Γ̃
tw̃0 = ỹ (35)

We see that if such a plausible health matrix exists, then there are initial
conditions w̃0 = O(AΓ̃, c)−1O(AΓ, c)w0 for which the plausible system will produce
the same output as the true system. We discuss how to find plausible health matrices
in the next section.
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Finding Counterexamples

We consider γ̄ , [γ1 . . . γn−1]
T to represent the true healths of the agents, and will

find another vector of healths γ̃ which maps to the same observability-canonical-
form system matrix.

The observability-canonical form system matrix A (20) is entirely specified by
its bottom row, which we will call ~aT ∈ R

n−1. The observability matrix O(AΓ, c)
gives the similarity transformation which relates A to AΓ, and hence

A = O(AΓ, c)AΓO(AΓ, c)−1,

i.e.

~aT = (cAn−1
Γ )AΓO(AΓ, c)−1 = cAn

ΓO(AΓ, c)−1

= c
(

−ΓmLm + γn1LT
v

)n
O(−ΓmLm + γn1LT

v , c)−1. (36)

Now, we view the search for counterexamples as the root-finding problem in γ̃,

f(γ̃) − f(γ̄) = 0, (37)

where f : R
n−1 7−→ R

n−1 is the function,

f(ξ) = c
(

− diag(ξ)Lm + γn1LT
v

)n
O(− diag(ξ)Lm + γn1LT

v , c)−1. (38)

This is a coupled system of polynomial equations in γ̃1 . . . γ̃n−1, which we solve
numerically to produce the counterexamples which follow.

Counterexample 1: Line Topology

As a limiting example we begin with four agents connected in a straight line as shown
in Figure 1; this is the connected topology with the fewest edges. We represent the
states of each of the agents in the egocentric coordinates of the fourth agent, and
measure the state of the first agent. The agents behave according to (13), with
γ1, . . . , γ4 as indicated in Figure 1, and compute the system matrix in observability
canonical form, A, as shown in the same figure.7

��
��

1

γ1 = 1

��
��

2

γ2 = 3

��
��

3

γ3 = 4

��
��

4

γ4 = 7

A =





0 1 0
0 0 1

−145 −124 −22





Figure 1. Network 1 - Line Topology

We can locate other healths γ1, . . . , γn−1 which also map to the same A; e.g.,

γ1 ≈ 7.370 γ2 ≈ −0.780 γ3 ≈ 4.600 (39)

Thus, we have shown by counterexample that even in the limiting case of straight
line topology, A and hence our measurement signal y(.) does not provide enough
information to uniquely identify the individual agent healths. Such counterexamples
are not unique: For a given topology there exist many γ1, . . . , γn−1 which can
explain the measurement y(·).

7Note that as expected from (24), a1 = 22 = JΓ.



“paper”
2008/7/21
page

i

i

i

i

i

i

i

i

Counterexample 2: A More Complex Network

��
��

3

γ3 = 4

��
��

4

γ4 = 7

��
��

1

γ1 = 1

��
��

2

γ2 = 3

�
�

�
�
�

A =





0 1 0
0 0 1

−435 −291 −33





Figure 2. Network 2

Consider a more complicated network, shown in Figure 2. As before, states are rep-
resented in agent 4’s egocentric coordinates, while the state of agent 1 is measured,
and A is computed. Also as before, we can find another Γ̃ which produces the same
A and so can explain our measurements:

γ1 ≈ 10.17 γ2 ≈ −0.821 γ3 ≈ 3.562. (40)

Thus, even under more general topologies, γ1, ..., γn−1 are not unique.

5 Concluding Remarks

In this paper we discuss how to establish health properties of linear networks with
nearest-neighbor interaction topologies, under the assumption that the health is
reflected by the gain in the consensus equation. In particular, we show that a global
health measure can be found by only observing a single agent while local (individual)
health measurements are not in general available. We also give a method for global
health monitoring using sampled data, and present a geometric interpretation of
the global network health.
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