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Abstract— How can one system “mimic” a motion generated
by another? To address this question we introduce an
optimal tracking problem which additionally optimizes over
functions which deform or “warp” the time axis and the
output space. Parametric and nonparametric versions of the
time-warped tracking problem are introduced and reduced
to standard Bolza problems. The output warping problem
is treated for piecewise affine output warping functions.

I. I NTRODUCTION

How can a system be controlled to execute a motion that
is “like” a desired motion? Although this may seem to be
a rather ill-posed question, it is exactly what robots are
asked to do in some areas of human-robot interactions,
particularly in Programming by Demonstration (for exam-
ple, [1]). Our particular goal is for systems (e.g. robotic
marionettes) to produce motions which are recognizably
and aesthetically “the same” as recorded human motions,
even when the systems which are being controlled are
unable to track those reference trajectories in a traditional
(e.g.,L2) sense.

In [2], this problem was partially addressed via super-
vised learning, and very little structure was assumed; the
concept of “similarity” was learned from scratch. In this
paper, we instead fix a particular definition for similarity
a priori: Namely, we treat mimicking as a special optimal
tracking problem with additional degrees of freedom.
Specifically, we allow for both the time axis and the
output space to be deformed elastically, and optimize over
the homeomorphisms defining these warpings.

The first portion of this paper is concerned with the
deformation of the time axis, and is motivated by the
recognition that the controlled system either simply may
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not be able to move as quickly as a human, or may
have natural modes of oscillation (imagine a marionette
swinging from its strings) which can be exploited by
interpreting time liberally. It differs from existing work
in time warping (e.g. [3], [4], [5], [6]) in thatthe control
problem and the “warping” problems are inextricably
coupled; and from work on time reparametrization (e.g.,
[7]) and path following (e.g., [8],[9],[10]) in that we
are interested in approximate tracking for finite-duration
moves, rather than in exact or asymptotic tracking.

Of the previous work, that which is most similar in
approach to our own appears in [11], the primary concern
of which is the comparison of motions for computer
vision purposes. Key differences include that in [11] time
warping is applied to the input to the systems rather
than the output as in our case, and in [11] the control
effort required to effect the motion is not penalized in the
optimization problem. These differences follow naturally
from the different goals of the two papers.

The second portion of this paper is concerned with
“warping” the output space. For motivation, consider
a marionette which cannot lift its arm above shoulder
level but which is asked to mimic a human who waves
above her head; although this motion cannot be tracked
well in e.g. anL2 sense, the puppet can nevertheless
perform a recognizably equivalent motion lower in space
and scaled. Output warping is inspired in large part by
work in image and video processing (e.g. [12], [13], [14],
[15], [16]), but as we will be “warping” not images but
output trajectories, there are however very few technical
similarities to this work (besides the use of simplicial
complexes to define warping functions in [16]).

II. T IME WARPING

A time warping functionis a continuously-differentiable
function w : [0, T ] → R, T ∈ R+, w(0) = 0 which



is strictly increasing. Such a function is a bijection, and
moreover a homeomorphism. We will denote the set of
all time warping functions (those satisfying the above
conditions) by Ω, and the set of derivatives of time
warping functions byΩ′; i.e., Ω′ is the set of continuous
non-negative functions which are zero at at most a finite
number of points.

Given a reference signalr : [0, T ] → R
p, T ∈ R+,

and another signaly : R → R
p, the usual goal of time

warping is to find a functionw ∈ Ω that minimizes the
functionalJ : Ω → R+ ∪ {0} defined,

J(w) =

∫ T

0

||r(τ) − (y ◦ w)(τ)||2Qdτ ∀w ∈ Ω (1)

in some norm|| · ||Q ,
√

(·)T Q(·).1

However, we can also use the time warping idea to for-
mulate a “time-warped” output-tracking problem as well,
and it is this which will be the focus of the first half of this
paper. We will do this in two ways: First, we will solve
the problem when any time warping function is allowed;
we call this thenonparametrictime warping problem. We
follow this with a look at techniques which fix a particular
parametrized form for the time warping function – we
address linear functions and, more generally, polynomials
– and which optimize over those parameters.

A. Tracking with Nonparametric Time Warping

Given a (possibly) nonlinear system of the form,

dxt

dt
(t) = f(xt(t), ut(t), t) (2)

yt(t) = h(xt(t))

(with xt(t) ∈ R
n, ut(t) ∈ R

m, yt(t) ∈ R
p, and

compatible dimensions for the domain and codomain of
f and h)2 we consider the optimal control problem of
minimizing

Jt(ut, w) =

[

∫ T

0

||yt(w(τ)) − r(τ)||2Qdτ+

∫ w(T )

0

||ut(t)||
2
Ru

dt +

∫ T

0

Rv(w
′(τ) − 1)2dτ

]

wherer : [0, T ] → R
p is a reference signal. The first term

penalizes tracking error, but differs from the usualL2

tracking problem by the introduction of the time warping

1In (1) and elsewhere, we denote|| · ||2
M

, (·)T M(·) and assume
M = MT � 0, for whichever matrixM is used in the subscript.

2Note that the subscriptt is simply part of the function namesxt,
yt, etc, and is used to distinguish these functions from othersto be
introduced later.

functionw : [0, T ] → [0,∞), and also in that we integrate
tracking error overreference time(τ time) instead of
system time(t time). The second term penalizes control
effort as usual. The third term penalizes large deviations
of w′(τ) from one, both to regularize the problem and to
capture the intuition that signals which must be “warped”
by a great deal are more dissimilar than those which do
not need to be warped as much.

Augmenting the state with the timet = w(τ), defining
v , w′ as the derivative ofw, x , xt ◦ w, u ,

ut ◦ w, andy , yt ◦ w, this problem can be restated as
the following standard (Bolza) optimal control problem:
Given the system,

d

dτ

[

x
t

]

(τ) =

[

v(τ)f(x(τ), u(τ), t(τ))
v(τ)

]

(3)

y(τ) = h(x(τ))

with known initial conditions(x, t)(0) = (x0, 0), mini-
mize the cost functional

J : L2([0, T ], Rm) × Ω′ → R

J(u, v) = Jtrack(u, v) + Jtimewarp(v) =
∫ T

0

[

||y(τ) − r(τ)||2Q + v(τ)||u(τ)||2Ru

+ Rv(v(τ) − 1)2
]

dτ . (4)

over the functionsu andv (these functions can be viewed
as control inputs to the system).

The small but important insight here is that time warping
can be viewed asmodifying the dynamics of the systemin
an appropriate time coordinate. The example that follows
clarifies this point.

Example 2.1:Consider the underdamped simple har-
monic oscillator described by transfer functionh(s) =
1/(s2 + 2ζω0s + ω2

0) (with ζ ∈ (0, 1) ⊂ R, ω0 ∈ R+),
and compatible state-space realization(At, Bt, Ct). Next
suppose that we would like to solve the infinite-time
problem (a modified version of (4)),

min
u,w

lim
T→∞

∫ T

0

[

1

T
||(yt ◦ w)(τ) − r(τ)||2Q+

1

w(T )
w′(τ)||(ut ◦ w)(τ)||2Ru

]

dτ (5)

where the reference signal to be tracked is the sinusoid,

r(t) = cos(ωrt) ∀t ∈ [0,∞) . (6)

with ωr ∈ R+. Moreover for clarity of exposition we
will limit our attention to time warping functions of the
form w(τ) ≡ ξτ for someξ ∈ R+ (Suchparametric time



warping functionsare discussed in more detail in section
II-B).

We note that the presence of frequencies other thanωr in
ut ◦w (and hence inyt ◦w) increases both terms of (5),3

sout◦w andyt◦w must approach sinusoids with angular
frequencyωr as t → ∞; without loss of generality4 we
will assume that they are in fact sinusoids. Also observing
that the phase ofut◦w has no effect on the second term of
(5), it must be thaty ◦w = a cos(ωrt) for somea ∈ R+,
and

ut(t) = Re

(

a

h(iωr/ξ)
ei

ωr
ξ

t

)

. (7)

It follows that the minimization problem (5) then reduces
to,

min
a,ξ

[

Q

2
(a − 1)2 +

Ru

2

∣

∣

∣

∣

a

h(iωr/ξ)

∣

∣

∣

∣

2
]

. (8)

For any fixeda, this is minimized with respect toξ when
the magnitude of the transfer function|h(iωr/ξ)| is max-
imized. This occurs whenξ = ξ∗ , ωr/(ω0

√

1 − ζ2) –
that is, whenξ is chosen so that the resonant frequency
of the system with system matrixξAt coincides with the
frequency of the reference signal.

The key point demonstrated by this example is that
the steady-state effect of time warping is to scale the
frequency axis (by the Fourier Dilation Theorem) so that
passbands of the system coincide with concentrations of
energy in the reference signal.

1) Optimality Conditions:

Theorem 2.1:The first order necessary optimality condi-
tions for the minimization of (4) are

2v(τ)uT (τ)Ru+

v(τ)λT (τ)
∂f

∂u
(x(τ), u(τ), t(τ)) = 0

T

||u(τ)||2Ru
+ 2Rv(v(τ − 1)+

λT (τ)f(x(τ), u(τ), t(τ)) + µ(τ) = 0 (9)

3These arguments can be made rigorous using Plancherel’s identity
for Fourier series and considering a sequence of values forT that are
multiples of 2π

ωr
; we have omitted this lengthier development for the

purposes of our informal discussion.
4This is explained in more detail in [17].

for all τ ∈ [0, T ], where

−
dλ

dτ
(τ) = 2h′(x)T Q(h(x) − r(τ)) +

v(τ)
∂f

∂x

T

(x(τ), u(τ), t(τ))λ(τ)

−
dµ

dτ
(τ) = v(τ)

∂f

∂t

T

(x(τ), u(τ), t(τ))λ(τ) (10)

with (λ, µ)(T ) = 0.

Proof : See [17].

Note that whenf is not time-varying,∂f
∂t

= 0, which
gives the simplification thatµ(τ) = 0 ∀τ ∈ [0, T ].

In fact, these equations (9) can be given the stronger
interpretation of stating that the gradient of the functional
(4) in the functional space of which(u, v) is an element
must be zero; we will leverage this interpretation in the
later section II-B.2 which describes an algorithm for
computing the optimal(u, v).

B. Tracking with Parametric Time Warping

In some situations, we may be interested only in time
warping functions with a particular parametric form. One
example is linear time-warping functions, which are of
special interest since they represent a uniform scaling
of the time axis. Another motive for investigating time
warping functions with given parametric forms is the
discretization of the problem for numerical solution.

To express these ideas, we introduce a parameter vector
ξ in some parameter setΞ ⊂ R

q, and aparametrization
function φv : Ξ → Ω′ which, given a parameter vector,
returns the derivative of a time warping function. Then,
we are in fact considering the problem,

min
ξ,u

J(u, φv(ξ)) . (11)

In the following subsections, we will first consider
parametrization functions that return polynomial time
warping functions – whose structure allow them to be
treated nicely under the Bolza framework – (with linear
time warping functions as a special case), and then give
a more general view of the problem.

1) Polynomial Time Warping:Polynomial time warping
functions are of the form,

w(τ) = φv(ξ)(τ) =

Nv
∑

i=1

ξiτ
i (12)

for some integerN ≥ 1, and with discrete parameter vec-
tor ξ = [ξ1, . . . , xiN ] ∈ R

Nv (Note that the requirement



that w(0) = 0 implies that there is no constant term in
the polynomial).

Theorem 2.2:The FONCs for the polynomial time warp-
ing problem are given by (9) and

∂J

∂ξ

T

(ξ) = diag(1, 1
2 , 1

3! , ...,
1

Nv ! )ν(0) = 0 (13)

where (and dropping time arguments tox, λ, µ, u, ν),

−
dν

dτ
=









2Rv + λT f(x, u, t) + µ
ν1

. . .
νNv−1









= 0 (14)

for all τ ∈ [0, T ], and withν(T ) = 0.

Proof : See [17]

2) The Chain Rule for Parametrization Functions:We
note briefly that if the Fŕechet derivatives of both the
parametrization functionφv and the costJ [defined in
(4)] exist, then we may in fact apply the solution given
in section II-A directly to the discretized problem (11)
through a simple application of the chain rule. This
hinges on the interpretation that the partial derivative of
the Hamiltonian with respect to the control input (as a
function of time) is the gradient ofJ with respect to the
control input (projected onto the dynamical constraint);
this is discussed more in [17]. Here, we will simply
introduce a second parametrization functionφu : Σ →
L2([0, T ], Rm) for someNu ∈ N and parameter space
Σ ⊂ R

Nu which, given some finite-dimensionalσ ∈ Σ,
returns a control input functionu ∈ L2([0, T ], Rm); this
yields a problem which is now fully discretized both in
u andv.

III. O UTPUT WARPING

It is not just the dynamics of the mimicking system that
may differ from those of the system that generated the
reference motion, but also spatial constraints and scales
– a problem evident even in the prototypical example of
a large industrial robot arm asked to imitate a human
operator. To treat this problem of spatial correspondence,
we will assume that the reference signalr that we have
been considering so far is in fact the composition of two
functions: the “actual” reference signalr̄ : [0, T ] → R

p,
and an “output warping function”s : R

p → R
p of our

choosing which transforms values ofr̄ before they are
compared to those of the output signaly. In other words,
r = s ◦ r̄. More precisely, anoutput warping functions :

R
p → R

p is a continuous bijective map with continuous
inverse (That is,s is a homeomorphism fromRp to R

p).
We will denote the set of all such functions byS.

We will additionally assume thats has a particular para-
metric form. This is expressed by saying thats is returned
by a parametrization functionφs : C → S, whereC is
some finite-dimensional parameter space. Specifically,C
is a space diffeomorphic toRNs for someNs ∈ N.

With these definitions, we can extend the original cost
functional (4) to obtain the new cost functional to be
minimized,

J̄ : L2([0, T ], Rm) × Ω′ × C → R

J̄(u, v, c) = J̄track(u, v, c) + J̄timewarp(v) + J̄outwarp(c)

=

∫ T

0

[

||y(τ) − (φs(c) ◦ r̄)(τ)||2Q+

||u(τ)||2Ru
+ Rv(v(τ) − 1)2

]

dτ +

J̄outwarp(c) (15)

whereJ̄outwarp is some cost used to penalize large output
warpings, regularize the problem, and in certain cases
enforce constraints; its form will be determined by the
choice ofφs and is discussed in more detail later.

A. Piecewise Affine Output Warping

The essential idea of piecewise affine output warping will
be that we divide the spaceR into some number ofp-
simplices, and use an affine warping function within each
of these, chosen in such a way that the resulting piecewise
function is continuous. In order to enforce thats remain a
bijection, this will require both that the individual affine
warping functions be full rank, and that the images of
their domains remain disjoint.

To begin, letS (the “input simplices”) be a finite pure
simplicial p-complex coveringR, and R (“the output
simplices”) be another finite pure simplicial p-complex,
which is isomorphic toS.5 Basically, we will optimize
over the positions of vertices inR, and use the in-
duced simplicial map (which interpolates vertex positions
barycentrically) as our output warping function.

In more detail: We denote thep-simplices contained
in S by S1, . . . , S|S|, and those contained inR by
R1, . . . , R|S|; that is, thep-simplices in S and R are
indexed. We also denote the vertices (0-simplices) ofS

5Puremeans that the only simplices of dimension less thanp are the
faces of higher-dimensional simplices.p-complexmeans that the highest
dimensional simplices arep-simplices.Isomorphicmeans that there is
a bijection between elements ofR andS that preserves topology.



andR by V R
1 , V R

2 , . . . andV S
1 , V S

2 , . . ., respectively, and
the vertices of a given simplexRi by Ri

1, . . . , R
i
p. Then,

we define the output warping function by,

s(r̄) =

p
∑

i=1

R
πS(r̄)
i βi(r̄, S

πS(r̄)) (16)

whereπS(r) : R → N is the function that, given a point
r̄ ∈ R, returns the index of thep-simplex inS containing
r̄, andβ : R × S → R

p+1 is the function that, given a
point r̄ ∈ R and a simplexSi ∈ S, returns the barycentric
coordinates ofr in Si if r ∈ Si and 0 otherwise. The
maps is called thesimplicial mapinduced by the vertex
map fromS to R.

Input simplices, S Output simplices, R

Fig. 1. Given the setS of input simplices, the output warping function
s is determined by the positions of the vertices of the corresponding
output simplicesR. This example uses a Coxeter-Kuhn-Freudenthal
tessellation of a regular grid of cubes inR2.

Defining for each simplicial complexK ∈ {S,R} a graph
GK whose vertices are the0-simplices inK, and in which
an edge exists between two vertices iff they are both
contained within the same1-simplex, then a cost which
tends to maintain the bijectivity ofs is given by,

J̄outwarp(c) = 1
2

∑
(

||V R
i − V R

j ||K − ||V S
i − V S

j ||K
)2

(V R
i

, V R
j

) ∈ edges(GR)

.

(17)
The idea here is thatGR is a rigid graph, and that by
maintaining edge distances we ensure that simplices can
neither “collapse” nor “collide.” IfGR is visualized as a
network of springs, then (17) gives their overall potential
energy.

The partial gradient of̄Joutwarp with respect to eachV R
i

is then,
∑

||V R
i −V R

j ||K−||V S
i −V S

j ||K

||V R
j

−V R
i

||K
K(V R

j − V R
i )

V R
j

∈ N
GR (V R

i
)

(18)

whereNGR(V R
i ) is the neighborhood ofV R

i in GR.

Admittedly, this cost does leave something to be desired,
since simplices can collapse with finite energy. Neverthe-
less, we believe it is useful for its simplicity. One may

wish to also apply (59) in [17] for each simplex in cases
where (17) is not sufficient.

Now, definec =
[

(V R
1 )T . . . (|V R

verts(R)|)
T

]T

. Let-

ting i1(r), . . . ip+1(r) be the indexes intoverts(S) cor-
responding to the vertices of the simplex inS containing
r, letting πS(r) be the simplex inS containingr, and
defining thep| verts(S)| × p matrix

Z(r) =







Iα1

...
Iα| verts(S)|






(19)

where αi1(r) = β1(r, πS(r)), . . . , αip+1(r) =
βp+1(r, πS(r)) and αi = 0 ∀i /∈ {i1(r), . . . , ip+1(r)},
then the the partial gradient of (15) without the last term
J̄outwarp is given by,

∇c(J̄ − J̄outwarp)(R) =

−2

∫ T

0

Z(r(τ))Q [y(τ) − (φs(c) ◦ r)(τ)] dτ . (20)

Hence the partial gradient of̄J with respect toc is simply
the sum of (18) and (20).

We apply piecewise affine output warping together with
linear time warping in a short example below.

Example 3.1:Suppose we would like the state of an
autonomous Van der Pol oscillator to track that of a
damped pendulum driven by a fixed-frequency sinusoid,
allowing for linear time warping and piecewise affine
output warping. That is, the system is given by,

d

dt

[

xt,1

xt,2

]

(t) =

[

xt,2(t)
ζvp(1 − x2

t,1(t))

]

yt(t) = xt(t)

(with in our caseζvp = 0.9) and the reference signalr is
the solution to (dropping time arguments tor1, r2),

d

dτ

[

r1

r2

]

=

[

r2

sin(τ) − ω2
0 sin(r1) − ζpendr2

]

with in our caseω0 = 1, ζpend = 0.5, x(0) = r(0) =
[0.1, 0.1]T , and τ ∈ [0, T ] = [0, 10]. We will use
essentially the same costs introduced earlier, but with
some specially-chosen constants (described in more detail
in [17]). Then, performing gradient descent using the
gradient given by (18) and (20), we obtain the results
shown in figures 2 and 3.

IV. CONCLUSIONS

In order to allow one system to mimic a reference signal,
we have introduced several versions of a modified output
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Fig. 2. Van der Pol oscillator vs. driven pendulum, before warping. We
wish to scale the time axis of the output (top left) and the output space
of the reference (bottom right) to align the two signals.
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Fig. 3. Van der Pol oscillator vs. driven pendulum, after warping. Time
warping matches the first part of the Van der Pol oscillator’s transient to
that of the pendulum (left top, bottom), and output warping rotates and
deforms the reference output space to better match the output (right top,
bottom).

tracking problem that also includes time and output warp-
ing functions as decision variables, and given FONCs
for all of these. The basic motivation has been that this
captures a measure of qualitative similarity which the
usual error metrics used in tracking problems (like the
generalizedL2 metric) do not.

The chief limitations of this approach are related to
computational tractability, and are common to many
problems in numerical optimal control: The gradients,
being the solutions to ordinary differential equations, are
fairly expensive to compute; and the nonconvexity of the
problem means that only local optima are guaranteed.
Nevertheless, it is possible to compute local optima
which do give results that achieve our ultimate goal of
qualitative similarity.
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