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Abstract

The problem of making one system “mimic” a motion generated by another is studied. To address this, an optimal tracking
problem is introduced that, in addition to tracking, optimizes over functions that deform or “warp” the time axis and the
output space. Parametric and nonparametric versions of the time-warped tracking problem are presented and reduced to
standard Bolza problems. The output warping problem is treated for affine and piecewise affine output warping functions.
Example applications are given, including that of controlling a marionette to mimic a human dancer.
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1 Introduction

The ineffable quality of “subjective similarity” is diffi-
cult to formalize, especially when it is items of differ-
ent kinds or classes that are compared. Nevertheless, the
rather ill-posed question of how to define it lies at the
heart of a number of areas of human-robot interaction,
particularly Programming by Demonstration, (e.g. Bil-
lard et al. (2007),Breazeal and Scassellati (2002)), where
humans ask robots to behave “like” them. In these areas,
and particularly when goals are aesthetic or artistic, the
question of what constitutes similarity is inescapable.

In this paper we fix a particular, control-aware defini-
tion for similarity a priori. Namely, imitation is defined
in terms of a novel optimal tracking problem, in which
the robot is given the flexibility to optimize over home-
omorphisms that “warp” or “deform” both the output
space and the time axis. An interesting aspect of this
problem is that the choice of warping functions is in-
extricably coupled with the design of the control input
that achieves the tracking.

The first portion of this paper is concerned with the de-
formation of the time axis, and is motivated by the recog-
nition that the controlled system either simply may not
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be able to move as quickly as a human, or may have nat-
ural modes of oscillation (imagine a marionette swinging
from its strings) that can be exploited by interpreting
time liberally. For instance, a marionette actuated by
weak servos whose arm swings with a natural frequency
of 1 Hz may be asked to mimic a human waving her
hand at 2 Hz. By choosing to interpret the human’s wave
at a slower speed, the oscillatory dynamics of the mari-
onette can be used, rather than fought against, to mimic
the wave. To likewise illustrate output warping, suppose
that the human waves at head level yet the puppet can-
not raise its hand above shoulder height. By translating
the human’s “wave” down to shoulder level, the pup-
pet can work around this limitation, the motion can be
tracked, and the human’s gesture can be convincingly
imitated. Combining time and output warping, in this
example one obtains a motion that is lower and slower
than the human’s, but still recognizably the same.

For the case when one simply wants to compare signals
rather than control systems, the time warping problem
has been studied extensively in the automatic speech
recognition literature, where this related problem is
solved with a dynamic programming algorithm known
as Dynamic Time Warping (DTW) (for example, see
Sakoe and Chiba (1971), C. Myers (1980), Waibel and
Yegnanarayana (1978)). The first portion of this paper
is inspired by that work, but differs in that we are now
interested in the control of systems, and since the control
problem and the “warping” problems are bidirectionally

Preprint submitted to Automatica 4 February 2011



coupled, one cannot now simply perform dynamic time
warping on a reference signal and then control the sys-
tem to track it; rather, the two problems must be solved
simultaneously.

A number of different but related problems have
also been studied in the controls context, as time
reparametrization (e.g., Pappas (1996)) or path fol-
lowing (e.g. Hauser and Hindman (1997),Skjetne
et al. (2005),Aguiar and Hespanha (2007)). In Pappas
(1996), for instance, infeasible reference trajectories
for feedback-linearizable systems with bounded con-
trol inputs are made feasible by reparametrization.
Certain minimum-time optimal control problems are
introduced, and necessary conditions for the existence
of time warping functions are given for this large class
of systems. Exact and asymptotic tracking are consid-
ered, but finite-time approximate tracking – which we
consider in this paper – is not.

Of the previous work, that most similar in approach to
our own appears in Raptis et al. (2007), in which the
authors discuss a number of time warping problems in
which dynamical constraints need to be enforced. The
primary concern of Raptis et al. (2007) is the comparison
of motions for computer vision purposes rather than the
control of systems, and this does however motivate dif-
ferent problem formulations and solutions. Linear time-
invariant systems are studied; a combination of dynamic
time warping and deconvolution is used to solve one for-
mulation efficiently, and another formulation results in
an optimal control problem. Key differences from our
work include that in Raptis et al. (2007) time warping is
applied to the input to the systems rather than the out-
put as in our case, and in Raptis et al. (2007) the control
effort required to effect the motion is not penalized in
the optimization problem. These differences follow nat-
urally from the different goals of the two papers.

Conceptually, output warping is inspired in large part by
work in “elastic” image deformation, which has applica-
tions to image registration (e.g., Kybic (2001), Uchida
and Sakoe (2001)), video compression, and image pro-
cessing (e.g., Akleman (1997)). As we will be “warping”
not images but output trajectories, there are however
very few technical similarities to our work in this liter-
ature (besides the use of simplicial complexes to define
warping functions in Akleman (1997)).

Finally, before proceeding, we note that a more detailed
exposition of what follows, including additional exam-
ples and figures, can be found in the technical report
Kingston and Egerstedt (2011).

2 Time Warping

A time warping function w : [0, T ] → R, T ∈ R+ is a
strictly increasing, continuously differentiable function

satisfying w(0) = 0; i.e., it is an increasing homeomor-
phism. We will denote the set of all time warping func-
tions by Ω, and the set of derivatives of time warping
functions by Ω′; i.e., Ω′ is the set of continuous non-
negative functions which are zero at at most a finite
number of points.

Given a reference signal r : [0, T ] → R
p, T ∈ R+, and

another signal y : R → R
p, the goal of time warping is to

find a function w satisfying the above (i.e., w ∈ Ω) that
minimizes the functional J : Ω → R+ ∪ {0} defined,

J(w) =

∫ T

0

||r(τ) − (y ◦ w)(τ)||2Qdτ ∀w ∈ Ω . (1)

For instance, consider the following example:

Example 2.1 Suppose T = 2π, r(τ) = sin( τ
2

2π ), and
y(t) = sin(t) for all τ ∈ [0, T ] and t ∈ R. Then the
optimal warping function is given by,

w∗(τ) =
τ2

2π
∀τ ∈ [0, T ]

since (y ◦ w)(τ) = sin( t2

2π ) = r(τ), so J(w∗) = 0 ≤
J(w) ∀w 6= w∗. Also note that although in this particular
example, exact matching is possible (i.e., there exists a
w ∈ Ω such that y ◦w = r), this is not generally the case.

We can use the time warping idea to formulate a “time-
warped” output-tracking problemas well.Wewill do this
in two ways: First, we will solve the problem when “any”
time warping function is allowed; we call this the non-
parametric time warping problem. We follow this with
a look at techniques that fix a particular parametrized
form for the time warping function – we address polyno-
mial functions – and which optimize over those param-
eters.

2.1 Tracking with Nonparametric Time Warping

Given a (possibly) nonlinear system of the form,

dxt

dt
(t) = f(xt(t), ut(t), t) (2)

yt(t) = h(xt(t))

(with xt(t) ∈ R
n, ut(t) ∈ R

m, yt(t) ∈ R
p, and compat-

ible dimensions for the domain and codomain of f and
h) 1 we consider, to begin, the optimal control problem,

min
u,w

∫ T

0

[

||yt(w(τ)) − r(τ)||2Q + w′(τ)||ut(w(τ))||
2
Ru

]

dτ

1 Note that the subscript t is simply part of the function
names xt, yt, etc, and is used to distinguish these functions
from others to be introduced later.
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where r : [0, T ] → R
p is a reference signal. 2 In other

words, we would like the output y to “track” the refer-
ence signal r as closely as possible. However, note that
this differs from the usual tracking problem by the intro-
duction of the time warping function w : [0, T ] → [0,∞),
and also in that we integrate tracking error over refer-
ence time (“τ time”) instead of system time (“t time”).

Defining v , w′ as the derivative of w; applying the
Chain Rule to (2); augmenting the state with the time

t = w(τ); defining x , xt ◦w, u , ut ◦w, and y , yt ◦w;
and moreover treating t as a function of time (so in fact
t = w), we can state the following standard (Bolza)
optimal control problem: Given the system,

d

dτ

[

x

t

]

(τ) =

[

v(τ)f(x(τ), u(τ), t(τ))

v(τ)

]

(3)

y(τ) = h(x(τ))

with known initial conditions (x, t)(0) = (x0, 0), mini-
mize the cost functional (dropping τ arguments)

Jtrack(u, v) =

∫ T

0

[

||y − r||2Q + v||u||2Ru

]

dτ (4)

over the functions u and v, which can be viewed as
control inputs to the system.

In fact, however, we will actually use a slightly modified
cost that also penalizes large deviations of w′(τ) from
one, both to regularize the problem and to capture the
intuition that signals that must be “warped” by a great
deal are more dissimilar than those that do not need to
be warped as much; this is given below:

J : L2([0, T ],Rm)× Ω′ → R

J(u, v) = Jtrack(u, v) + Jtimewarp(v)

=

∫ T

0

[

||y(τ) − r(τ)||2Q + v(τ)||u(τ)||2Ru

+Rv(v(τ) − 1)2
]

dτ (5)

This, together with (3), is the problem with which we
will be interested in this section. Since it is also a Bolza
problem, the solution can be found using standard opti-
mal control theory, which we apply in the next section.
First, however, we will present a brief discussion of the
significance of dynamics to the time warping problem in
order to build some intuition:

Example 2.2 Consider the underdamped simple har-
monic oscillator with state xt(t) = (xt,1, xt,2)(t) ∈ R

2

2 We denote || · ||2M , (·)TM(·) and assume M = MT � 0,
for whichever matrix M is used in the subscript.

and dynamics

d
dt

[

xt,1

xt,2

]

=

[

0 1

−ω2
0 −2ζω0

] [

xt,1

xt,2

]

+

[

0

1

]

ut

yt = [ 1 0 ]xt

(6)

with ζ ∈ (0, 1) ⊂ R, ω0 ∈ R+, and suppose that we would
like to solve the infinite-time problem (a modified version
of (4)),

min
u,w

lim
T→∞

∫ T

0

[

1

T
||(yt ◦ w)(τ) − r(τ)||2Q+

1

w(T )
w′(τ)||(ut ◦ w)(τ)||

2
Ru

]

dτ (7)

where the reference signal to be tracked is the sinusoid,

r(t) = cos(ωrt) ∀t ∈ [0,∞) . (8)

with ωr ∈ R+. Moreover for clarity of exposition we will
limit our attention to time warping functions of the form

w(τ) = ξτ ∀τ ∈ [0, T ] (9)

for some ξ ∈ R+ (Such parametric time warping func-
tions are discussed in more detail in section 2.2).

Before proceeding, we point out that in this example the
control input which globally minimizes the cost (7) will
not be unique. This is, informally, because components
of signals which are bounded and occur for finite time
“disappear” in the infinite-time average of (7). In fact,
if u∗ is a minimizer for (7) (with ξ fixed), then so is
u∗+ ũ for any bounded ũ such that limt→∞ ũ(t) = 0. The
consequence for this example is that it is only the behavior
of the various signals as t → ∞ which is of interest.

We note that the presence of frequencies other than ωr

in ut ◦ w (and hence in yt ◦ w) increases both terms of
(7), 3 so ut ◦w and yt ◦w must approach sinusoids with
angular frequency ωr as t → ∞; without loss of generality
(by the previous paragraph) we will assume that they are
in fact sinusoids. Also observing that the phase of ut ◦w
has no effect on the second term of (7), it must be that
y ◦ w = a cos(ωrt) for some a ∈ R+, and

ut(t) = Re

(

a

h(iωr/ξ)
ei

ωr
ξ

t

)

(10)

where h is the transfer function defined by h(s) = 1/(s2+
2ζω0s+ ω2

0).

3 These arguments can be made rigorous using Plancherel’s
identity for Fourier series and considering a sequence of val-
ues for T that are multiples of 2π

ωr
; we have omitted this

lengthier development for the purposes of our informal dis-
cussion.
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It follows that the minimization problem (7) then reduces
to,

min
a,ξ

lim
T→∞

[

Q

T

∫ T

0

(a− 1)2 cos2(ωrτ)dτ+

Ru

ξT

∫ ξT

0

Re

(

a

h(iωr/ξ)
ei

ωr
ξ

t

)2

dt

]

=

min
a,ξ

[

Q

2
(a− 1)2 +

Ru

2

∣

∣

∣

∣

a

h(iωr/ξ)

∣

∣

∣

∣

2
]

. (11)

For any fixed a, this is minimized with respect to ξ when
the magnitude of the transfer function |h(iωr/ξ)| is max-

imized. This occurs when ξ = ξ∗ , ωr/(ω0

√

1− ζ2) –
that is, when ξ is chosen so that the frequency of the ref-
erence signal coincides with the resonant frequency of the
“reference time” system matrix

The key point demonstrated by this example is that the
steady-state effect of time warping is to scale the fre-
quency axis (by the Fourier Dilation Theorem) so that
passbands of the system coincide with concentrations of
energy in the reference signal. (In fact, this effect is
sufficient to overcome certain performance limitations,
caused by unstable zero dynamics, that are inherent to the
unwarped reference tracking problem; we refer the inter-
ested reader to Kwakernaak and Sivan (1972) and Aguiar
et al. (2008).)

2.1.1 Optimality Conditions

Theorem 2.1 The first order necessary optimality con-
ditions for the minimization of (5) are (dropping τ argu-
ments),

2vuTRu + vλT ∂f

∂u
(x, u, t) = 0T (12)

||u||2Ru
+ 2Rvv(τ − 1) + λT f(x, u, t) + µ = 0 (13)

for all τ ∈ [0, T ], where λ is the solution to the backwards
differential equations (16), (17).

Proof : Taking (x, t) to be the state, (u, v) the control
input, and (λ, µ) the costate, the Hamiltonian for this
problem is,

H((x, t), (u, v), (λ, µ), τ) =

L(x, (u, v), τ) + vλT f(x, u, t) + µv (14)

where

L(x, (u, v), τ) =

||h(x)− r(τ)||2Q + v(τ)||u||2Ru
+Rv(v(τ) − 1)2 (15)

and the costate equations are,

−
dλ

dτ
=

∂H

∂x

T

((x, t), (u, v), (λ, µ), τ)

=
∂L

∂x

T

(x, (u, v), τ) + v
∂f

∂x

T

(x, u, t(τ))λ

= 2h′(x)TQ(h(x)− r) + v
∂f

∂x

T

(x, u, t)λ (16)

−
dµ

dτ
=

∂H

∂t
((x, t), (u, v), (λ, µ), τ)

= v
∂f

∂t

T

(x, u, t)λ (17)

with (λ, µ)(T ) = 0. Note that when f is not time-

varying, ∂f
∂t

= 0, which gives the simplification that
µ(τ) = 0 ∀τ ∈ [0, T ].

In any case, the first order necessary optimality condi-
tions (FONCs) are,

∂H

∂u
((x, t), (u, v), (λ, µ), τ) =

2vuTRu + vλT ∂f

∂u
(x, u, t) = 0T (18)

∂H

∂v
((x, t), (u, v), (λ, µ), τ) =

||u(τ)||2Ru
+ 2Rvv(τ − 1) + λT f(x, u, t) + µ = 0

for all τ ∈ [0, T ].

In fact, these equations (18) can be given the stronger
interpretation of stating that the gradient of the func-
tional (5) in the function space of which (u, v) is an ele-
ment must be zero; we will leverage this interpretation
in the later section 2.2.2 which describes an algorithm
for computing the optimal (u, v).

Example 2.3 The preceding, more general formulation
can be used to solve the usual, more specific time-warping
problem (1). Given signals y and r to be compared, we
define the “signal generator” system,

ẋt(t) = y′(t) , xt(0) = y(0) (19)

in which case the corresponding augmented system in
reference time is

d

dτ

[

x

t

]

(τ) =

[

v(τ)y′(t)

v(τ)

]

. (20)

The Hamiltonian is (letting Q = 1, Rv = k ∈ R)

H((x, t), v, (λ, µ), τ) =

(x− r(τ))2 + k(v − 1)2 + λvy′(t) + µv, (21)
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and we obtain the costate equations

−
dλ

dτ
(τ) = 2(x− r(τ)) (22)

−
dµ

dτ
(τ) = λ(τ)v(τ)y′′(t(τ)) (23)

with (λ, µ)(T ) = 0. Finally, the FONC is,

∂H

∂v
((x, t), v, (λ, µ), τ) = µ+ λy′(t) = 0 (24)

which converts the problem into a two point boundary
value problem.

2.2 Tracking with Parametric Time Warping

In some situations, we may be interested only in time
warping functions with a particular parametric form.
One example is linear time-warping functions, which are
of special interest since they represent a uniform scaling
of the time axis. Another motive for investigating time
warping functions with given parametric forms is the
discretization of the problem for numerical solution.

To express these ideas, we introduce a parameter vector
ξ in some parameter set Ξ ⊂ R

q, and a parametrization
function φv : Ξ → Ω′ which, given a parameter vector,
returns the derivative of a time warping function. Then,
we are in fact considering the problem,

min
ξ,u

J(u, φv(ξ)) . (25)

Parametrization functions that return linear and poly-
nomial time warping functions yield problems that can
be treated nicely under the Bolza framework – and, more
generally, under the assumption that Fréchet derivatives
exist, we may apply the Chain Rule to (25) to compute
the gradient of J with respect to ξ. This is explored in the
following sections; more detail can be found in Kingston
and Egerstedt (2011).

2.2.1 Polynomial Time Warping

For instance, polynomial time warping functions are of
the form,

w(τ) = φv(ξ)(τ) =

Nv
∑

i=1

ξiτ
i (26)

for some integerN ≥ 1, and with discrete parameter vec-
tor ξ = [ξ1, . . . , xiN ] ∈ R

Nv (Note that the requirement
that w(0) = 0 implies that there is no constant term in
the polynomial). These can be handled nicely under the
standard Bolza framework by treating w′ as the output
of an autonomous system (a chain of integrators).

Specifically, we define the augmented system,

d

dτ



























x

t

v1
...

vNv−1

vN



























(τ) =



























v1(τ)(f(x(τ), u(τ), t(τ))

v1(τ)

v2(τ)
...

vN (τ)

0



























(27)

y(τ) = h(x(τ))

with partially-known initial conditions (x, t)(0) =
(x0, 0), and seek to minimize (5) with respect to the
initial conditions v1(0), . . . , vN (0), which define the
polynomial. In order for t to be a valid time warping
function, it is also necessary that this minimization be
performed such that the constraint v1(τ) > 0 ∀τ ∈ [0, T ]
is satisfied. The FONCs are given in the subsequent
theorem:

Theorem 2.2 The FONCs for the polynomial time
warping problem are given by (31) and

∂J

∂ξ

T

(ξ) = diag(1, 1
2 ,

1
3! , ...,

1
Nv!

)ν(0) = 0 (28)

where ν is the solution to (29).

Proof : For the polynomial time warping problem, the
Hamiltonian is (here we identify the costate by (λ, µ, ν),
where ν(τ) ∈ R

Nv ∀τ ∈ [0, T ]),

H((x, t, v), u, (λ, µ, ν), τ)

= L(x, (u, v1), τ) + λT v1f(x, u, t) + µv1

+ νT [v2, . . . , vN , 0]T

= ||h(x) − r(τ)||2Q + v1||u||
2
Ru

+Rv(v1 − 1)2

+ λT v1f(x, u, t) + µv1 + νT [v2, . . . , vN , 0]T

and we obtain the costate equation for ν, (those for λ
and µ are the same as given in (16, 17)):

−
dν

dτ
(τ) =

∂H

∂v

T

((x, t, v)(τ), u(τ), (λ, µ, ν)(τ), τ )

=















||u||2Ru
+ 2Rv(v1 − 1) + λT f(x, u, t) + µ

ν1
...

νNv−1















= 0 (29)

for all τ ∈ [0, T ], and with ν(T ) = 0. This gives us a
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convenient method for minimizing over ξ = v(0) since,

∂J

∂ξ

T

(ξ) = diag(1, 12 ,
1
3! , ...,

1
Nv!

)
∂JT

∂v(0)
(v(0))

= diag(1, 12 ,
1
3! , ...,

1
Nv!

)ν(0) . (30)

In other words the gradient of the cost with respect to
the polynomial coefficients is simply a scaled version of
the initial value of the costate ν.

Additionally, the optimality conditions for the control
input are,

∂H

∂u
((x, t, v)(τ), u(τ), (λ, µ, ν)(τ), τ) =

2v1u
TRu + v1λ

T ∂f

∂u
(x, u, t) = 0T (31)

for all τ ∈ [0, T ].

Finally, we note that, in principle, since Theorem 2.2 is
a restriction of Theorem 2.1, it can also be proven as
a corollary following the approach of the next section
(2.2.2), in which case (28) would be seen as the projec-
tion of the second equation of (18) onto the subspace
of polynomial functions. That said, the introduction of
the exosystem is particularly convenient, in that it re-
duces the problem to one that can be addressed within
the standard Bolza framework.

2.2.2 The Chain Rule for Parametrization Functions

If the Fréchet derivatives of both the parametrization
function φ and the cost J [defined in (5)] exist, then
we may in fact apply the solution given in section 2.1
directly to the discretized problem (25) through a simple
application of the chain rule.

Since we will be interested in discretizing not just the
time warping function v but also the control input u,
at this point we will introduce a second parametrization
function φu : Σ → L2([0, T ],Rm) for some Nu ∈ N

and parameter space Σ ⊂ R
Nu . In other words, given

some finite-dimensional σ ∈ Σ, the function φu returns
a control input function u ∈ L2([0, T ],Rm). This yields
the fully discretized problem,

min
σ,ξ

J(φu(σ), φv(ξ)) , min
σ,ξ

Jφu,φσ
(σ, ξ) . (32)

With the interpretation that the partial derivative of
the Hamiltonian with respect to the control input (as a
function of time) is the gradient of J with respect to the

control input (projected onto the dynamical constraint),

∇uJ(u, v)(τ) =

∂H

∂u

T

((x(τ), t(τ)), (u(τ), v(τ)), (λ, µ)(τ ), τ )

∇vJ(u, v)(τ) =

∂H

∂v

T

((x(τ), t(τ)), (u(τ), v(τ)), (λ, µ)(τ ), τ )

for all τ ∈ [0, T ]. Then, applying the chain rule to (32),
the partial gradients of Jφu,φσ

with respect to σ and ξ
are given by the inner products,

∇σJφu,φv
(σ, φ) =











〈∇σ1
φu(σ),∇uJ(φu(σ), φv(ξ))〉L2([0,T ],Rm)

...
〈

∇σNu
φu(σ),∇uJ(φu(σ), φv(ξ))

〉

L2([0,T ],Rm)











∇ξJφu,φv
(σ, φ) =











〈∇ξ1φv(ξ),∇vJ(φu(σ), φv(ξ))〉Ω′

...
〈

∇ξNv
φv(ξ),∇vJ(φu(σ), φv(ξ))

〉

Ω′











where the inner products are defined in the L2 sense.
By solving the state and costate ODEs and evaluating
the inner-product integrals numerically we thus obtain
a principled and general way to discretize the problem.

Example 2.4 Suppose φu and φv parametrize control
inputs by uniform linear b-splines. In other words, the
control inputs u and v are represented by uniformly spaced
samples, and linear interpolation is used for the interme-
diate values. Then, φu(σ) and φv(ξ) can both be expressed
as sums of triangular basis functions, as given below,

φu(σ)(τ) =

K
∑

i=1











σ1+m(i−1)

...

σmi











tri

(

K − 1

T
(τ − i− 1)

)

φv(ξ)(τ) =
K
∑

i=1

ξi tri

(

K − 1

T
(τ − i− 1)

)

where K ∈ N is the number of samples used. Then, the
functional gradients are given by,

(∇σi
φu(σ, ξ))(τ) =

emod(i−1,m)+1 tri

(

K − 1

T
(τ − d i

m
e − 1)

)
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for all i ∈ {1, . . . ,mK}, and

(∇ξiφv(σ, ξ))(τ) = tri

(

K − 1

T
(τ − i− 1)

)

for all i ∈ {1, . . . ,K}, where ei denotes the i-th element
of the natural basis, and

tri(τ) =

{

1− |τ | if |τ | ≤ 1

0 if |τ | > 1
. (33)

This gives us the finite-dimensional partial gradient for
Jφu,φv

with respect to ξi,

(∇ξJφu,φv
(σ, ξ))i =

∫ T

0

[

∂H

∂v
((x, t, v)(τ), u(τ), (λ, µ, ν)(τ), τ )

tri

(

K − 1

T
(τ − i− 1)

)]

dτ

for all i ∈ {1, . . . ,K}. The expression for ∇σJφu,φv
is

similar.

3 Output Warping

In the previous sections, we assumed that the spatial
correspondence between values of the output signal and
those of the reference signal was known, and that only
the temporal correspondence needed to be determined.
In this section, we will additionally assume that the spa-
tial or output-space correspondence is unknown. This
explicitly addresses the fact that it is not just the dy-
namics of the “mimicking” system that may differ from
those of the system that generated the reference motion,
but also spatial constraints and scales – a problem evi-
dent even in the prototypical example of a large indus-
trial robot arm asked to imitate a human operator.

To treat the problem of spatial correspondence, we will
assume that the reference signal r that we have been con-
sidering so far is in fact the composition of two functions:
the “actual” reference signal r̄ : [0, T ] → R

p, and an
“output warping function” s : Rp → R

p of our choosing
which transforms values of r̄ before they are compared
to those of the output signal y. In other words, r = s◦ r̄.

More precisely, an output warping function s : Rp → R
p

is a continuous bijective map with continuous inverse
(That is, s is a homeomorphism from R

p to R
p). We will

denote the set of all such functions by S.

We will additionally assume that s has a particular para-
metric form. This is expressed by saying that s is re-
turned by a parametrization function φs : C → S, where

C is some finite-dimensional parameter space. Specifi-
cally, C is a space diffeomorphic to RNs for someNs ∈ N.

With these definitions, we can extend the original cost
functional (5) to obtain the new cost functional to be
minimized,

J̄ : L2([0, T ],Rm)× Ω′ × C → R

J̄(u, v, c) = J̄track(u, v, c) + J̄timewarp(v) + J̄outwarp(c)

=

∫ T

0

[

||y(τ)− (φs(c) ◦ r̄)(τ)||
2
Q

+v(τ)||u(τ)||2Ru
+Rv(v(τ) − 1)2

]

dτ

+ J̄outwarp(c) (34)

where J̄outwarp is some cost used to penalize “large”
output warpings, regularize the problem, and in certain
cases enforce constraints; its form will be determined by
the choice of φs and is discussed in more detail later.

Differentiating (34) to find the partial gradient with re-
spect to c, we obtain the FONC,

∇cJ̄ = −

∫ T

0

(∇cφs(c))(r̄(τ))
TQ [y(τ) − φs(c)(r̄(τ))] dτ

+∇cJ̄outwarp(c) = 0 (35)

which must be satisfied in addition to those given in
section 2.1. Note that in this equation we assume for
notational simplicity that c is a column vector, but as
we have stipulated that C be diffeomorphic to R

Ns this
is no restriction.

3.1 Affine Output Warping

Affine output warping functions are of the form,

φs((M, z))(r) = s(r) = Mr + z (36)

where M ∈ R
p×p is an invertible matrix, and z ∈ R

p.
Hence, for affine output warping functions, c = (M, z),
C = R

p×p × R
p, and Ns = p2 + p.

In selecting an appropriate J̄outwarp for this parametriza-
tion, we have the goals (1) of rewarding “smaller” trans-
formations – that is, those “close” to the identity trans-
formation in some sense – over “larger” ones; and (2) of
ensuring that s remain a bijection – which means penal-
izing values of (M, z) for which M is singular or nearly-
singular. The following function achieves these goals:

J̄outwarp((M, z)) = (37)

α
tr(MTM)p

det(MTM)
+ β

1

p
tr[(M − I)T (M − I)] + γzT z
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where α, β, γ ∈ R+ ∪ {0} are scalar coefficients used to
weight the relative “importance” of the various parts of
the cost.

The first term is inversely proportional to the Gram de-
terminant of the columns of M and so gives a measure
of “how singular” M is. The presence of the Frobenius
norm tr(MTM) in the numerator makes this term some-
what independent of the absolute scaling of the matrix,

since tr((αM)T (αM))p

det((αM)T (αM)) = tr(MT M)p

det(MTM)) for all α ∈ R; that

is, it is constant on lines passing through the origin in
R

p×p. Furthermore, if σ1, . . . , σp are the singular values
of M , then,

pp
(

σ2
min

σ2
max

)p

≤
tr(MTM)p

det(MTM)
≤ pp

(

σ2
max

σ2
min

)p

(38)

so the p−th root of this term is always between the
(squared) l2 condition number for M and its reciprocal,
up to a constant factor p.

The second term is the squared Frobenius norm ofM−I,
and gives the expected value of ||Mx− x||2/||x||2 if x is
a random variable drawn from a uniform distribution on
a ball of (any) fixed radius centered at the origin in R

p.
Together with the third term, it penalizes “large” trans-
formations – i.e., those that differ substantially from the
identity map.

Hence for this problem we have,

J̄(u, v, (M, z)) =

∫ T

0

[

||y(τ) −Mr̄(τ) − z||2Q+

||u(τ)||2Ru
+Rv(v(τ) − 1)2

]

dτ

+ J̄outwarp(c) (39)

Combining (39) with (37) and taking partial gradients
with respect toM and z we obtain the FONCs expressed
by Theorem 3.1.

Theorem 3.1 The additional FONCs for the problem
(39) are,

∇M J̄(u, v, (M, z)) =
∫ T

0

2Q (Mr̄(τ) + z − y(τ)) rT (τ)dτ

+ α
2

det(MTM)

(

− tr(MTM)pM−T+

p tr(MTM)p−1M
)

+ 2β
1

p
(M − I) = 0 (40)

and

∇z J̄(u, v, (M, z)) =
∫ T

0

2Q(Mr̄(τ) + z − y(τ))dτ + 2γz = 0 (41)

which must be satisfied in addition to (18).

Before proving this, we present a few preliminaries with
regard to notation. In what follows, (x 7→ [expression])
denotes functions that take x as an argument and return
[expression]; e.g., (x 7→ x2) is the function that squares
its argument. The notation Dc(f) is used for the differ-
ential of a function f at a point c in the domain of f .
Note thatDc(f) is itself a (linear) function which can be
evaluated; we denote its evaluation at h (the “direction”
of variation of the argument to f) by Dc(f)(h). For in-
stance, Dc(x 7→ x3)(z) = (h 7→ 3c2h)(z) = 3c2z. We
denote the gradient of f at c by ∇f(c). The derivative
is the vector dual to the gradient; that is Dc(f)(h) =
〈∇f(c), h〉 for all variationsh of the argument to f , where
〈·, ·〉 is an appropriate inner product. Continuing the pre-
ceding example, ∇(x 7→ x3)(c) = (x 7→ 3x2)(c) = 3c2.

We now give the proof of Theorem 3.1.

Proof : Considering the first term of (39),

DA

(

M 7→
tr(MTM)p

det(MTM)

)

= tr(ATA)pDA

(

M 7→
1

det(MTM)

)

+

1

det(ATA)
DA

(

M 7→ tr(MTM)p
)

(42)

where, since

DA

(

M 7→ det(MTM)
)

=
(

dA 7→ 2 det(ATA)(tr(A−1dA)
)

(43)

we have

DA

(

M 7→
1

det(MTM)

)

=

(

dA 7→
−2 tr(A−1dA)

det(ATA)

)

(44)

and

DA

(

M 7→ tr(MTM)p
)

=
(

dA 7→ 2p tr(ATA)p−1 tr(AT dA)
)

(45)
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Substituting (44) and (45) into (42),

DA

(

M 7→
tr(MTM)p

det(MTM)

)

=

(

dA 7→
−2

det(ATA)

〈

tr(ATA)pA−T−

p tr(ATA)p−1A, dA
〉

)

(46)

where the angle brackets denote the Frobenius inner
product. This (46) is the dual to the gradient, which is
given by (and replacing the symbol A by M),

−
2

det(MTM)

(

tr(MTM)pM−T − p tr(MTM)p−1M
)

.

Likewise differentiating the other terms we obtain (40)
and (41).

3.2 Piecewise Affine Output Warping

The essential idea of piecewise affine output warping will
be that we divide the space R into some number of p-
simplices, and use an affine warping function within each
of these, chosen in such a way that the resulting piecewise
function is continuous. In order to enforce that s remain a
bijection, this will require both that the individual affine
warping functions be full rank, and that the images of
their domains remain disjoint.

To begin, let S (the “input simplices”) be a finite pure
simplicial p-complex covering R, whose 1-skeleton is
rigid; and R (“the output simplices”) be another finite
pure simplicial p-complex, which is isomorphic to S. 4

Basically, we will optimize over the positions of vertices
in R, and use the induced simplicial map (which inter-
polates vertex positions barycentrically) as our output
warping function.

In more detail: We denote the p-simplices contained
in S by S1, . . . , S|S|, and those contained in R by
R1, . . . , R|S|; that is, the p-simplices in S and R are
indexed. We also denote the vertices (0-simplices) of S
and R by V R

1 , V R
2 , . . . and V S

1 , V S
2 , . . ., respectively, and

the vertices of a given simplex Ri by Ri
1, . . . , R

i
p. Then,

we define the output warping function by,

s(r̄) =

p
∑

i=1

R
πS(r̄)
i βi(r̄, S

πS(r̄)) (47)

4 Pure means that the only simplices of dimension less than
p are the faces of higher-dimensional simplices. p-complex
means that the highest dimensional simplices are p-simplices.
Isomorphic means that there is a bijection between elements
of R and S that preserves topology.

Input simplices, S Output simplices, R

Fig. 1. Given the set S of input simplices, the output warping
function s is determined by the positions of the vertices of
the corresponding output simplices R. This example uses a
Coxeter-Kuhn-Freudenthal tessellation of a regular grid of
cubes in R

2.

where πS(r) : R → N is the function that, given a point
r̄ ∈ R, returns the index of the p-simplex in S contain-
ing r̄, and β : R×S → R

p+1 is the function that, given a
point r̄ ∈ R and a simplex Si ∈ S, returns the barycen-
tric coordinates of r in Si if r ∈ Si and 0 otherwise. The
map s is called the simplicial map induced by the vertex
map from S to R.

Defining for each simplicial complex K ∈ {S,R} a graph
GK whose vertices are the 0-simplices in K, and in which
an edge exists between two vertices iff they are both
contained within the same 1-simplex, then a cost which
tends to maintain the bijectivity of s is given by,

J̄outwarp(c) = 1/2
∑

(V R
i

,V R
j

)∈edges(GR)

(

||V R
i − V R

j ||K − ||V S
i − V S

j ||K
)2
.

(48)
The idea here is that GR is a rigid graph, and that by
maintaining edge distances we ensure that simplices can
neither “collapse” nor “collide.” If GR is visualized as a
network of springs, then (48) gives their overall potential
energy.

The partial gradient of J̄outwarp with respect to each V R
i

is then,

∇V R
i
J̄outwarp(c) =

∑

V R
j

∈N
GR (V R

i
)

αijK(V R
j − V R

i ) (49)

where

αij ,
||V R

i − V R
j ||K − ||V S

i − V S
j ||K

||V R
j − V R

i ||K
(50)

and NGR(V R
i ) is the neighborhood of V R

i in GR.

Admittedly, this cost does leave something to be desired,
since simplices can collapse with finite energy. Neverthe-
less, we believe it is useful for its simplicity. One may
wish to also apply (37) for each simplex in cases where
(48) is not sufficient.

9



−2 −1 0 1 2
−2

−1

0

1

2

y
1
(τ)

y 2(τ
)

Output

−2 −1 0 1 2
−2

−1

0

1

2

s
1
(r(τ))

s 2(r
(τ

))

Warped Reference

0 5 10
−1

0

1

2

τ

Output (Van der Pol Oscillator)

 

 

0 5 10
−2

−1

0

1

2

τ

Reference (Driven Pendulum)

 

 

y
vp,1

(τ)

y
vp,2

(τ)

s
1
(r(τ))

s
2
(r(τ))

Fig. 2. Van der Pol oscillator vs. driven pendulum, after
warping. Time warping matches the first part of the Van
der Pol oscillator’s transient to that of the pendulum (left
top, bottom), and output warping rotates and deforms the
reference output space to better match the output (right top,
bottom).

Now, define c =
[

(V R
1 )T . . . (|V R

verts(R)|)
T

]T

. Let-

ting i1(r), . . . ip+1(r) be the indexes into verts(S)
corresponding to the vertices of the simplex in S
containing r, letting πS(r) be the simplex in S
containing r, and defining the p| verts(S)| × p ma-

trix Z(r) =
[

Iα1, · · · , Iα| verts(S)|

]T
where αi1(r) =

β1(r, πS(r)), . . . , αip+1(r) = βp+1(r, πS(r)) and αi =
0 ∀i /∈ {i1(r), . . . , ip+1(r)}, then the the partial gradient
of (34) without the last term J̄outwarp is given by,

∇c(J̄ − J̄outwarp)(R) =

− 2

∫ T

0

Z(r(τ))Q [y(τ) − (φs(c) ◦ r)(τ)] dτ . (51)

Hence the partial gradient of J̄ with respect to c is simply
the sum of (49) and (51).

We apply piecewise affine output warping together with
linear time warping in the example of Figure 2.

3.3 The Puppet

To demonstrate the application of these ideas, we com-
puted optimal controls for a simplified model of a mar-
ionette, which we wished to “mimic” the movements of
a human as recorded by a motion capture system (Fig-
ure 4). The marionette (Figure 3) is modeled as a collec-
tion of ten point masses m1, · · · ,m10 joined by massless
rods and suspended from four massless strings in two di-
mensions, as illustrated by Figure 5. The free endpoints
p1, · · · , p4 of the strings can be moved kinematically, and
the remainder of the model is fully dynamic. The result-
ing mechanical system has 11 dynamic and 8 kinematic
degrees of freedom, for a state space dimension of 30. The

Fig. 3. The marionette Fig. 4. Subject, dancing

strings are in principle represented by inequality con-
straints on the distance between the points at which their
ends are anchored; in our model these constraints are
for simplicity relaxed to exponentially-stiffening springs
(for a complete treatment of marionette dynamics in-
cluding inequality constraints, see Johnson and Mur-
phey (2007)).

The dynamics of the state x(t) = (q, ν, p)(t) are then
summarized,

q̇ = ν (52)

ν̇ = M(q)−1



−
∑

i,j

Γij(q)νiνj −∇Ugrav(q)

−∇Uspring(q, p)− µν



 (53)

ṗ = u (54)

where M(q) is the mechanical system’s mass matrix,
each Γij(q) ∈ R

11 is a vector of Christoffel symbols of the
first kind, Ugrav is the gravitational potential, µ ∈ R+

is a damping coefficient, and Uspring(q, p) is the sum of
spring potentials; specifically,

Uspring(q, p) =
∑

(i,j)∈Ispring

k1 exp
[

k2
(

||ρi(q)− pj ||
2 − l2ij

)]

where Ispring = {(2, 1), (7, 3), (4, 2), (8, 4)} is a set of
index pairs summarizing the spring connections, each
ρi : R11 → R

2 is the forward kinematic map from the
configuration q to the position of the i-th point, lij is the
nominal length of the string connecting mi and pj , and
k1, k2 ∈ R+ are chosen constants.

The output map h in this case depends only on the con-
figuration component q of the state, and returns the po-
sitions ρ1(q), · · · , ρ10(q) of the ten masses m1, · · · ,m10.
Our goal is that the output signal y track, in the time-
and output- warped sense, the corresponding positions
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Fig. 5. The marionette is modeled as a system of point masses
(m1, · · · ,m10) interconnected by massless rods (solid lines)
and suspended by strings (dashed lines) from four kinemat-
ically-controllable points (p1, · · · , p4).
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Fig. 6. The gradient descent procedure is characterized by a
rapid initial descent followed by slower final descent. Each
curve corresponds to a different initial guess for the control
trajectory, drawn randomly from a space of sinusoids.

r̄ = [ρ̄1, · · · , ρ̄10]T of points on a human subject. More
specifically, the reference signal was created by a human
dancer who performed the bhangra in a motion-capture
environment. It consists of the coordinates of the sub-
ject’s joints as computed by standard motion-capture
software, 5 and projected onto a coronal (or frontal)
plane. The optimization takes place with both time- and
output- warping. The time warping is nonparametric,
and the output warping optimizes over the six scalar pa-
rameters defining a two-dimensional affine transforma-
tion that is applied to all of the reference points.

The results are shown in Figures 6, 7, and 8, where it
can be seen that marked improvements in similarity are
achieved, both in numerical cost (Figure 6) and in sub-
jective appearance (Figure 7). Both Figure 6 and Fig-
ure 8 also illustrate the point that, since the dynamical
constraints are nonconvex, the local optimum to which
the gradient descent procedure converges depends on the
initial condition used to initialize the algorithm. Never-
theless, even for fairly widely-separated initial guesses
in the puppet example, similar final costs are obtained.

5 Vicon VisionIQ was used.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5
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0

0.5

1

Output Warping Affine Transformations

Fig. 8. The affine transformations arrived at by the opti-
mization algorithm for different initial guesses (as described
in Figure 6) are illustrated as frames in R

2 (solid), along
with the identity transformation (dotted). The lowest-cost
transformation is drawn in bold.
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