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Abstract—Model predictive control can be computation- those behaviors which can be considered as parame-
ally intensive as it has to compute an optimal control terized feedback control laws. In other words, given a

trajectory at each time instant. As such, we present a system whose dynamics can be expressed as
method in which parametrized behaviors are introduced

as a level of abstraction to give a finite representation 2(t) = f(x(t),u(t)), @
to the control trajectory optimization. As these control ’
laws can be designed to accomplish different tasks, the wherex(¢) is the state and:(¢) is the control at time

robot is able to use the presented framework to tune the ¢ \We consider behaviors which can be expressed as a
parameters online to achieve desirable results. Moreover, feedback control law of the form(z(t),8) where 6
)

we build on switch-time optimization techniques to allow . t tor. This all the d ics to b
the model predictive control framework to optimize over IS a parameter vector. IS allows the dynamics 1o be

a series of given behaviors, allowing for an added level €xpressed as
of adaptability. We illustrate the utility of the framework

through the control of a nonholonomic mobile robot. & = f(a(t), w(z(t),0))- )
Therefore, instead of optimizing over(t) for some
. INTRODUCTION time horizon, we optimize finite dimensional parame-

- . ters. Thus we exchange the two-point boundary value
Model predictive control (MPC) is a control SChem%robIem for a parameter optimization problem.

which adds feedback to otherwise typically open-loop This idea of optimizing over behaivors extends the

optimal control solutions [1]. This is beneficial as OPywork presented in [6] where MPC was used to coor-
timal control allows for the satisfaction of constraint%“nate different schema-based behaviors [5]. We extend
while minimizing some defined cost, but sometimeg,is \ork with two significant contributions. First, we
§uffers when uncertainties are introduced, e.g., [2]. MPL,aralize the approach to be applicable to any behavior
is able to add an element of feedback and robustnessii¥%: aliows the dynamics to be expressed as in (2)
solving the optimal control problem at each time instangecong, we incorporate techniques from switched-time
applying one control input, and repeating the procesgyimization (e.g., [7], [8]) to allow the robot to optimize
e.g., [1] . over a series of behaviors during a single optimization
However, one drawback to MPC is the cost of comsie, The framework we present will optimize over both
pu'qng the optimal control solution at every time instangy,o parameters associated with the behaviors as well
This comes from the fact that the state needs t0 B the time to switch between each behavior. These
simulated into the future over some time horizon {4 contributions will allow for the application of this

find the optimal control trajectory. Unless a closed formgnirol method to a much broader class of systems and
solution is known, this typically requires solving a set Oépplications.

differential equations where some initial conditions and 14 jjjustrate the operation and versatility of the pro-
some final conditions are known, e.g., [2], [3]. This i$,nsed framework, we present two control schemes for
known as a two-point boundary value problem and whilg 15nholonomic mobile robot which are amenable to
numerical solutions to this problem do exist (€.9., [2Dhe framework. As vector fields are a common motion
they are often computationally intensive, e.g., [4]. control framework (e.g., [5], [9], [10], [11], [12]), we
To remedy this computational burden, we look t@resent a nonlinear control law which will allow a
outsource the state trajectory generation to behavigignholonomic vehicle to follow a vector field that we
designed to accomplish the desired task. While behavigfgapt based on our MPC strategy. This will demonstrate
based control schemes constitute an entire class gk ability of the framework to optimize over a given
robotic control paradigms [5], we will only considerpehavior. Second, we will present a method of control
based on [13] where inputs are held constant over a given
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The remainder of this paper will proceed as follows. Moreover, it may be desirable to have the robot
In the next section we will present a framework anéxecute a string of behaviors in order to accomplish
optimality conditions for a behavior-based MPC schema. desired task. This could also be used as a method
In section Il and 1V, we develop two control schemesf anticipating needed changes in the parameters of a
for a nonholonomic vehicle to illustrate the utility andoehavior. Therefore the same behavior could be executed
versatility of the MPC framework. We will end the papemith different parameters, as is done in Sections Il and
with some concluding remarks in Section V. V.

In either case, we assume the robot has a given string
1. BEHAVIOR-BASED SWITCH-TIME MPC of behaviors to executdg, 7o), (k1,71); ..., (KN, TN ),

MPC is a method of introducing feedback into thavherer; indicgtes the time when the system SYVitCh from
solution of an optimal control problem by performing thévi—1 0 #i. This allows us to write the dynamics of the
optimization at each time instance, e.g., [1]. To reducyStém as
computation, we build upon a concept introduced in [E_S] = fx(t), wi(x(t),6;) for 73 <t < 1141,  (3)
as we present a method which depends upon behavior-
based control schemes to generate the state trajectavitich we simplify as
This adds a level of abstraction which allows us to turn
the two-point boundary value problem into a parameter
optimization problem. In this section, we will explain We build upon results from switch time optimization
the type of behaviors we will utilize in our framework,(e.g., [7], [8]) to optimize over both the parameters asso-
layout the formulation of the behavior-based MPC, anglated with each behavior as well as the time to switch
finish by giving the first order necessary optimalithetween behaviors. To find the optimal parameters and

conditions which can be used to solve the optimizatiogwitch times at each time step, we minimize a cost of
problem at each time step. the form

T = fi(:v(t),Hi) for T <t < Tiy1. (4)

A. Behavior-Based Control

We utilize the term behavior to infer the notion that
we will be working with control laws that are capable of N—1
accomplishing certain tasks. More specifically, we seek ®;(0:,0i—1) + U((z(Tn41))
to utilize behaviors which are tunable feedback control
laws to generate state trajectories and then optimize over
the different tunable parameters to achieve the desired
result. As such, when we refer to behavior, we arignerex(t) € R” is the state at time, 7 = {r;} is a

referring to any control scheme in which the resultinget of switch timesg; denotes the parameters that will
dynamics only depend on the current state and a tunagje ysed on in the dynamics on the interval [r;7; 1],
vector of parameters as shown in 2. § = {6;}, and O(t,) denotes the environmental data
This builds upon a wealth of different control apqyailable to the robot at tima, when the optimization
plications which all use some form of parameterizeghkes place. For ease of notation we allaw= t, and
control. Examples include schema-based behaviors [3],,, = ¢, + A where A is the time horizon of the
gait design for robotic snakes [14], [15] and leggegptimal control problem.
locomotion [16], orbiting for unmanned aerial vehicles This cost has a general form to allow for different
[10] and ground vehicle obstacle avoidance [11], anghplications. It has an instantaneous temwhich is a
even potential fields methods which are used in a widgnction of the state, environment, and the parameters of
variety of robotic motion applications [9], [12], just tothe behavior during the time intervale [r;, 7,.1]. An
name a few. example of this could be a cost on proximity to obstacles
and control input. It also includes a codt;, which is
B. MPC Framework a function of the parameters used before and after the
As can be seen in Figure 1, a naive parameter assigwvitch timer;. An example could be a function which
ment can quickly lead to a poor outcome. Thereforpunishes the difference between the parameters and some
we present an MPC scheme which will allow for thewominal value. Finally, there is a terminal cost, on
parameters to be optimized online, admitting feedbatke state which could be used to ensure that the robot is
into the parameter selection. progressing towards a set of goal states.

N Tit1
Jr0) =3 / Li(2,0,,0(to))dt+  (5)
i=0 Y Ti

=1

s.t.z = fl(x,ﬂz) form <t< Tit1,
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Fig. 1: This figure shows an example of Behavior-Based designavigation. Goal positions are shown in green, obstaicieed, and local
minima in yellow. The far right image shows an example of coninly the vector fields in a manner which can produce a localima

By formulating our cost and dynamics, we can then

define our MPC strategy as follows. Proof The proof of Theorem 2.1 follows standard varia-

Behavior-Based MPC tional methods. We first augment (5) with the dynamics:
1) Minimize (5) with respect to the behavior param- B N o T
eters,9;, and the time instances to switch between J(7,0) = Z/ (Li(ffa 0:,0(to))+  (10)
these parameters;. i=0"Ti
2) Apply the behavior associated with the first set of N—1
parameters for one time instant. M (fil(x, 0)) _j;))dt+ Z ®;(0;,0;_1)+ ¥ ((x(Tn41))
3) Repeat. i1

We now vary the switch times and parameter vectors as
T — 7+ ev andd; — 6; + ey; which causes the state to

C. First Order Optimality Conditions S
o _ ~vary asz — x + en. Similar to [7] and [8] we can take
In order to minimize (5) with respect to the desireghe Taylor expansion and write

variable, we present the first order necessary conditions

which can then be used with any gradient descent l(j(T +ev,0—ey) — J(1, 9)) = (11)
methods (see, for example [17]). €
Theorem 2.1: The first order necessary conditions of N[ friv 9L af
optimality for optimizing (5) with respect to the switch = Z [/ ( - iy )\Ta_ + )'\T)ndH—
times, ;, and the parameter vectors, are given by im0 /7 r v
Tt QL of
oJ G\ 2L ,
9 = (Li—l —Li + AT (fio1 — fi)) (6) /T (891- A 89i)dt%+
a.J . Vi1 (Li = Ligr + X (fi = fis1)) lr
a_ei _EZ(TZ) ( ) 8(1)1' . 3(1)1' . N 8_\11 |
where 90, 1T 96, T T g T
s oLt ort @®) _ _ _ _
T T o oz Allowing X to be defined as in (8) arf to be defined
for Ti§t<Ti+1,i:0,...,N as
T OL; of 0P; 0P;11
0w (1) = AT 2l ) s+ —+—— (12
A1) = (@) &) /t (aez- A aei) +50, "6, 12
) LT ofT we can simplify (11) to
b=-%~ — (©) e ]
g g —(J(T—i—eu,@—e*y) — J(, 9)) = (13)
. €
Za? 0P = N
i(Tit1) = Ly i =1,.,N—-1
) ooy PN = Z(fi(ﬂ‘)%-i-viH (Li—Lis +)\T(fi_fi+1))|n+1)
0 1= i=0




which gives the partials in (6) and (7). We can also 4
simplify the costatet; to get the dynamics given in (9)
by differentiating (12) with respect th A very similar
proof of the variation in the negative direction gives the
same results. m

IIl. AV ECTORFIELD APPROACH TOMOTION
CONTROL FORNONHOLONOMIC MOBILE ROBOTS

A

>
To illustrate the utility of the MPC approach presented
in the previous section, we present a control method
for a nonholonomic mobile robot which is amenable toFig. 2: This figures shows a diagram of the states of a unicycle
the proposed framework. Nonholonomic systems provid&P°t €1, 22) gives the position and:3 gives the orientation.
for an extra level of difficulty in control as they have
non-integrable constraints on the state space, e.g., [18]. ) i
In motion control for mobile robots, this often comes' €€V andw c_o_rrespond to th_e input translational and
about because the vehicle is not able to move orthogofigiational velocities of the vehicle. _
to the direction of motion. This provides for a good ©ON€ common method of controlling a unicycle robot
example for our framework as we can design behavio‘Pch a vector field is to use a proportional-derivative

to overcome these constraints and then optimize over tﬂaég) co_ntrol, €g., ,[11]' The basic ',dea being to aIIovy the
parameters affecting those behaviors. translational velocity to be determined by the magnitude

In this section, we design a behavior which wilf the vector field and then using PD control to adjust the

allow for a kinematically-constrained vehicle to follow aangular velomt_y FO g!v_e the desired _d|rect|on of motion.
vector field. This has an array of applications as vector HOWever, this is difficult to use with Theorem 2.1 as

field approaches are the basis of many control schen{B€ partial derivative of the control is needed. This is
for mobile robots such as schema-based control [ ade difficult by the differential term in the PD control.

potential fields methods [9], [12], and orbiting method: herefore, we presenta nonlinea_r unicy<_:le co_ntrol which
[11], [10] to name a few. is capable of followmg a v_ecftor fleld while being easily
The MPC framework presented in section I will allowiNcorporated into our optimization framework. In the
for the adaptation of this vector field to minimize som&emainder of this section, we give an alternate expression
cost while taking into account the effect it will have orf©" the unicycle dynamics which makes our controlier
the robot. We will now proceed by outlining the control€"Y Simple to express, before describing the controller
law, giving optimality conditions necessary for use wittRNd Proving its asymptotic stabilization of the unicycle
Theorem 2.1, and ending with an example which wilf? the case of positive-definite potential fields.
demonstrate the utility of the MPC framework as it "€ ;mlcycle dynamics (14), with control input=
adapts a vector field to reach an orbit in a desirabl# ] . can be rewritten in Cartesian coordinates as
fashion while taking the dynamics into account.

v

p = wvh
A. Non-Linear Unicycle Control h=wJh (15)
To account for the motion constraint present in mobile T ) T
platforms, we utilize the unicycle robot model whichVherep = (21 @2]", h = [cos(xs) sin(ws)]", and
allows the robot to move with certain translational and 0 —1
angular velocities, e.g., [9]. This is a common method J = {1 0 ] (16)
used to model planar motion in mobile robotic platforms
such as cars and differential drive systems, e.g., [93 the 90-degree rotation matrix. The state space of (15)
[11]. It is also closely related to the Dubins model usei$ X = R? x S; — the plane (which represents positions),
for unmanned aerial vehicles which assumes a consté@gether with the circle (which represents orientations).
velocity, e.g., [9]. Figure 2 shows a diagram of a typical Given a compact workspade C R? containing the
unicycle robot where the state dynamics are given asorigin, together with positive definite,continuously-

differentiable functionU : Q@ — R, we define the
v cos(x3)

&= |vsin(zs) | , (14) 1This positive-definiteness requirement can be omitted, icv
w case global stabilization tlmcal minima is guaranteed.



controller, This can be found by noting thafh L h and the
w = —ky,(grad ) Th use of the definition of the inner product (i.:, b) =

o~ b (arad D) an) lalllb] cos(v))

, B. Partials for Cost Optimization
wherek,, k, > 0 are arbitrary constants. For example, i ) ] )
if the potential used in (17) i&/(p) = 1p”p, then one While the given unicycle control is able to follow a
obtains the specialization of (17) 2 ' given vector field, it is more important in this context for
' its ability to easily be incorporated into the optimization

w = —kup"Jh = —kl|pl|sin(¢) (18) framework presented in Section II. To make this clear,

v =—kypTh = —ky||p|| cos(¢) we setk, = k,, = 1 and give the control in the form of
where ¢ is the angular deviation of the robot’s headiné“) as
vector, from the vector towards the goal. |[u(z, 8,0)| cos(¢) cos(z3)
The controller (17) globally asymptotically stabilizes f(z,0) = |||u(z,8,0)| cos(¢) sin(x3) (23)
the robot to the origin of the workspace, without regard |w(z,0,0)| sin(p)
to the robot’s orientation. This is stated formally by the . )
next theorem: where, to be precise) = atan2(uq, u1) — x3. Sinceu

Theorem 3.1 (Unicycle Sabilization): Let Q ¢ R2 is an element of a_vector field, it can be a function of
be a compact set (the workspace), did Q — R a the statey, the environmental data present to the robot,
positive definite, continuously-differentiable scalatdie O @ Well as a vector of parametefs, .

Then the controller (17) globally stabilizes the dynamics Pefining the control as such allows us to write the
(15) to the setXy 2 {(p,h) € R2 x S; | p = 0}. foIIc_>wmg theorem which can then be_ used_ to fl_nd the
Proof: The proof uses LaSalle’s Theorem, and th@ptimal parameters at e_a(_:h time step in conj_unct|0n with
candidate Lyapunov function, Theorem 2.1 and a definition of the vector field.
Theorem 3.2: The partial of (23) with respect to a
X > (p,h) o Up) ; (19) parametery, wherev can bex; or an element of;

. . . _ given in (5), is given as
i.e., we treatl/, which is a function defined only on the

workspacef), as a function/” on the entire state space of % cos(z3) — USiD(I?))aa—?
X=0x35]. F g—fy sin(zs) + UCOS(Ig)%—IVS , (24)
Differentiating V' in time and substituting from (15) v g_w
and (17), we obtain K
] ) where
Vo RlmIOn =0, 0 OO 0 L@ e 22,
so the nonincreasing-Lyapunov-value condition of oy lull v og
LaSalle’s Theorem is satisfied. We will denote bythe ow 1, T Ou Ox3
set of states where (20) holds. o = Tl R(¢ — 5)8_7 = [Jull COS(¢)W,
Moreover,V = 0 only whengradU L h, in which .
case (17) implies R(¢) = cos(¢) —sin(e)
sin(¢)  cos(¢) |
|w| = k|| grad U] (21)

andv = ||u|| cos(o).
andz # 0 (so long as|| grad U|| # 0). Consequently,

X, is not just positively-invariant, but also the largesPT00f The derivation comes directly from taking the
positively-invariant set in, and by LaSalle's Theorem partial derivative with respect to (23) and recognizing

is the positive limit set of (15) under the controller (17)ghets_tructure which can be simplified using the rotation
matrices. -
| |

This shows that the control law will follow a gradientc, orpit Example

field to a minima. For a general vector field, where .
R? is an element of that field, we can modify (17) to To demonstrate the ability of the MPC framework

) presented in Section Il to adapt the parameters of the
follow the vector field as . o o
. behavior, we present an orbiting example. Orbiting is
w = —kyllul sin(®) 22) often accomplished by having the vehicle follow a vector
v = —kyl|ul| cos(¢). field that creates a stable limit cycle [11], [10]. As such,
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Fig. 3: This shows different snapshots in time of the adaptadf the vector-field given in equation (25) executed by tle@avior in (23).
The robot is shown with its planned trajectory extendingrfrid in each case. The middle two images are actually the saneeinstance
where the middle-left image shows the vector field producethe first time window and the middle-right image shows thetaefield
produced in the second time window.

we parametrize the control law given in [11] to allow 1
our method to adapt the vector field online and expre
it as
0.8
Yy Worb |
u(zx) = z, 25
@=a| ] N
©06
where 3
~ N
7= ge(r - 3]1). 2
£0.4
. . . o
& =uap—c xp = [¥1 2] is the two-dimensional =
position of the robotec € R? is the center of the 0.2
orbit, g € R is a gain on the speed;. € R is
a gain on convergence to the limit cycle,, € R

is the desired frequency of the orbit, ande R is 0 !
the radius of the orbit. To adapt the vector field using

our MPC scheme we allow the parameter vector to b%f switches between different sets of parameters. The argts

0= [gs Gic  Word 7”]- normalized so that the largest cost is scaled to one.
The goal we set to accomplish is to approach a desired

orbit while maintaining a given velocityy;, and with as

Iittle_ angular velocity as possible. Therefore we defing,r MmPC framework. It builds on the concept presented

our instantaneous cost as in [13] and modified in [19]. The basic idea is that for
L, = &(v _ vd)2 4 P2 2 (26) mobile navigation in unknoyvn environments, 'Fhe robot

2 2 can perform well by choosing constant velocities over

and our terminal cost as some time horizon. This gives the behavior of having
03 2 the robot executing a circular arcs or straight lines for

V= f(Hx —dl=r)%, @7 some given time horizon.

We setd; = 0. It is not difficult to see that a single set of parameters
Figures 3 and 4 illustrate the results of using our MP€annot successfully navigate a cluttered environment.
framework to minimize the cost. Figure 3 shows thdf [13], [19], the authors present methods of choosing
the field changes to allow the robot to minimize thé&he constant velocities from a finite, admissible set of
cost. It also shows the ability of multiple switch times teontrols. This admissible set is defined in terms of avoid-
anticipate the needed changes. This is also demonstrdidiobstacles and the velocities are chosen by selecting
in Figure 4 which shows that significant improvementélose that minimize a defined cost. In our method, we
can be seen when multiple switches are made. allow the cost to steer the robot away from the obstacles
while navigating to the goal. Therefore, the MPC scheme

IV. A CIRCULAR ARC APPROACH TONAVIGATION  4dapts the velocities online without restricting them to a
To further illustrate the versatility of the proposedinite set. Moreover, we can have multiple time windows
MPC approach, we provide a second method of contri@ allow for multiple arcs to be planned in sequence.
for a unicycle motion which deals directly with theThis becomes quite useful in planning paths through an

dynamics of a unicycle and provides an ideal setup fomknown environment.

2 3
Number of Switches

ig. 4: This figure shows the costs associated with diffenemtbers

)



Fig. 5: This shows the different environments the robot gaidd through along with a couple of representative trajierst in each environment.
Obstacles are shown in red while the goal position is showgréen.

5

To perform the task, we work straight from the dy- 1
namics given in (14) where our parameter vector ce
be defined a®; = |w,v]. To define our costs, we 0g
change (26) to have a term which punishes proximii '
to obstacles and modify (27) to punish distance froi g .
the goal. We write the costs as 2 °

%
N, §0.4f
Li= p_;(”_”d)%r%wupg;r(x’m)’ 29) Zo.z ‘ ‘ ‘
r(w,oi)zexp(—(x—oi)T |:p4 0:| (w_Oi)), 0 Ilﬂ IZH IBH H I

Number of Switches

U = p5 ||:C —Xyg ||2, (29) Fig. 6: This figure shows the costs associated with diffenembers
2 ’ of switches between different sets of parameters. The asts

. . . th normalized so that the largest cost of each set is scaled ¢o on
where z,, is the goal positionp; is the i"'' obstacle Each grouping of three bars correspond to the left, middhe} a

measurement oN, sensor measurements, afyg} are  right environments shown in Figure 5
the adjustable weights in the cost function. The cost

structure inL; allows the robot to maintain a given © @
translational velocity while punishing high rotationa
velocities and proximity to obstacles. Also, 8sis a
terminal cost, it encourages progress toward the gc
without the need to move directly towards it at eac
time instant.

®
) e® -
® ..
To perform an evaluation of the utility of our MPC
framework, we ran a series of navigation simulation ® o
®
®
®
® o

through three different environments, the results ¢

which can be seen in Figures 5 and 6. We assume that e ®
have N, = 16 sensors distributed evenly about the robc 4 f
and that the robot plans only according to the sens o
measurements that it has at the moment, in other worus

there is no mapping involved. This is shown in Figure 7Fig. 7: This shows an example of the different trajectorieseyated

. . . ) . at each time-step of the MPC framework. The robot is shown
which shows multiple “snapshots” of the robot traversingyith the expected trajectory extending from it. This alsowss the

through an environment. amount of information used at each time-step as the robatente
The results of the simulations show the utility of our (e trajectory by planning over the sensor meastremenisrso
small circles.

MPC framework. The robot was able to successfully nav-
igate the three different environments without changing
any of weights on the costs. This shows that it is able to



adapt to the different enviroments online. This example1]
also shows the benefit of allowing multiple switch times
as the results in Figure 6 show that significant improve-
ment is made by allowing the optimization to anticipatgi2]
changes in the parameters.

[13]
V. CONCLUSION

In this paper we have presented an MPC strategm]
which utilizes the ability of behaviors to create de-
sirable trajectories, exchanging a two-point boundary
value optimization problem for a parameter optimizatiof15]
problem. We demonstrated the versatility of this method
in Sections IIl and IV through two different examplesy;g
Each example provides distinct behaviors to guide a
nonholonomic mobile robot on a desirable trajector
showing the applicability of the presented framework t
different control schemes. [18]

Both examples also showed the ability of the robii !
to adapt the behaviors online to achieve the desir o?
result. In particular, in the example in Section IV the
adaptability of the MPC framework was emphasized
as the robot was able to successfully navigate through
different environments without changing any of the
weights on the costs. We also saw the utility of allowing
the optimization framework to anticipate changes in
the behaviors through the addition of optimal switch
times. This provided for significantly reduced costs in
the execution of the both of the examples.
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