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Abstract— In this paper, we try to understand what people
mean when they say that two objects are “similar.” This is an
important question in the area of human-robot interactions,
where robots must interpret human movements in order to act
in a “similar” manner. Specifically, we assume that we are given
a collection of empirically generated pairwise comparisons
between a subset of so-called alternatives (members of a given
set), which produces a partial order over the set of alternatives.
Based on this partial order, an inverse optimization problem
is solved, producing a cost associated with each alternative
that is consistent with the partial order. This cost is, moreover,
assumed to be generative in that it can be used to select the
globally best alternative. An experimental study involving the
comparison of apples and oranges is presented to highlight the
operation of the proposed approach.

I. I NTRODUCTION

As the saying goes, one can not compare apples and
oranges. But why not? It is clear that some apples look
more like oranges than others. One can thus ask the question
“What makes apple X look more like an orange than apple
Y?” Or, more interestingly (yet also more absurdly), “If apple
X is in fact a robot apple, how should it act in order to
make it more like an orange?” These questions may seem
like nonsense, but this is exactly what mobile robots are
asked to do in some areas of human-robot interactions, e.g.
Programming by Demonstration, where humans (oranges)
ask robots (apples) to behave “like” them, e.g. [1],[2], [3],
[4].

The basic idea behind the Programming by Demonstration
paradigm is that the human operator should be able to in-
struct robots (typically manipulator arms) how to act without
having to write code or use any other type of formal interface
language. Instead, the operator should be able to “show”
the robot how to act. But, since the robot typically has a
completely different set of dynamical constraints, degrees of
freedom, and even spatial scales, it is not at all clear what
it should be doing in response to the human operator. For
more on these issues, see for example [5],[6],[7],[8],[9].

In this paper, we address this seemingly ill-posed problem
by formulating a version of it in such a way that it is
amenable to analytical solution, while still being based on
subjective judgments of “similarity.” The reason for insisting
on the subjective element is that, at the end of the day,
“similarity” is to be understood as “what people consider

to be similar.” We should note, already at this point, that a
related idea is pursued in [10], [11]. But, in those references,
the basic premise is not that one is given a collection of
comparisons, but rather a metrically ranked collection of
examples. Whatis inherently similar between those works
and the work presented in this paper is that the empirical
data is to be used to find an underlying cost function that it
is postulated people use when making judgments about the
similarity of objects and motions.

It should also be noted that in econometrics, the problem
of inferring people’sutility functions from data is well-
studied. What is different with this problem is that the
objective typically is to either understand game theoretic
decision making strategies in a market or stochastic setting
(e.g., [12], [13], [14]), or to locate clusters of consumers
with similar preferences (e.g., [15], [16]). This paper is really
about finding deterministic “similarity” measures that fit the
empirical data, and, as such, it has an entirely different focus
and objective.

II. PROBLEM FORMULATION

A. Experimentally Generated Comparisons

Let A be the set of all possible objects (“apples,” or robot
actions) that we would like to compare relative to some
ideal (“the orange,” or a human action) – most generally,
we will refer to these asalternatives. To begin, we will
assume very little aboutA; it may not even be countable.
If we are interested in programming a particular robot by
demonstration,A might be the set of all possible motions
that the robot can perform. If we are comparing actual
apples to oranges in order to find the most “orangelike”
apple, thenA would be the set of all conceivable apples.
To capture the subjectivity of comparing elements of this
set to the ideal, suppose that we can conduct experiments,
in each of which we ask human observers to perform a
pairwise comparison of elements ofA; specifically, assume
that we can pose questions of the form, “Which of these
apples, X or Y, is more orangelike?” This particular form
of experiment, it should be noted, has the advantage over
other forms (e.g., rankings on a scale from 1-10) that it is
less prone tobatch effects, a psychological phenomenon in
which people’s rankings are only accurate among objects
compared at around the same time [15], [17].



We will assume for our purposes that the human observers
we ask to compare alternatives are “similar,” in that they tend
to have the same opinions about which alternatives are more
like the ideal, so we can treat their responses meaningfully
in an aggregate sense (i.e., we will not be concerned with
Condorcet’s paradox).

Given this assumption, one can think of the group of hu-
mans as a generalizedcomparator, or sorting function, which
it will be our goal to “learn” from output measurements.
More specifically, we assume that the human observers are
presented with an unsorted pair of alternatives as “input,”
and that they “output” a corresponding sorted pair, ordered
by similarity to the ideal. That is, the humans in these
experiments behave as a maph from the setU = A × A
of questions, to the setY = A ×A of answers, whereh is
defined,

h(aa, ab) =

{

(aa, ab) aa ≻ ab

(ab, aa) ab ≻ aa
(1)

and where we use “aa ≻ ab” to denote “aa is more ‘orange-
like’ than ab.” From this point of view, an “experiment” – in
which we present alternatives to human observers and obtain
similarity judgments – is really just a function evaluationof
h.

Now let E ⊂ A be a finite, indexed subset of alternatives
that we, the experimenters, will actually present to the
human observers; we will refer to these as theexperimental
alternatives. The reason for defining this set is that, ideally,
we would like to be able to present only a few alternatives
(i.e., those in the setE), in order to draw conclusions
about preferences overall possible alternatives (everything
in A – which may not even be countable). Additionally, let
P = {1, 2, . . . , P} be the index set associated withE ; we
define this for convenience so that we may refer to “theith

alternative,” which we will abbreviateEi ∈ E .
Next, suppose that we ask the human observers to perform

a series of pairwise comparisons of alternatives. That is, we
present elements ofE two-at-a-time to human observers in
an indexed set of questionsQ =

{

u1, u2, . . .
}

⊂ E ×E ⊂ U
to obtain the indexed set of responsesR =

{

y1, y2, . . .
}

=
{

h(u1), h(u2), . . .
}

⊂ E × E ⊂ Y. In other words, thinking
of the humans again as a comparator, we input a sequence
of unsorted pairs, and receive a corresponding sequence of
sorted pairs as output; from this, we hope to deduce the inner
workings of the comparator.

h

u ∈ U y ∈ Y

Fig. 1. Human as comparator – a memoryless nonlinear system

We will also assume that a vector of feature scoresϕ(a) ∈
F = R

q associated with each alternativea ∈ A is available
automatically from experimental data. If we are comparing
actual apples to oranges, such features might include the
average RGB colors of the apples, their dimensions along
various directions, and similar measurements. (In fact, we

do exactly this, as will be described later in the paper.)
Moreover, for the special case when we are evaluating the
features of an alternative in the experimental setE , we will
for compactness of notation writeϕ(Ek) = ϕk.

Now, suppose that we can form a parametrized cost,J :
R

N ×F → R that, given some parameterρ ∈ R
N , maps the

features (an element ofF ) of any alternative inA to a real
number, and that

J(ρ, ϕ(aa)) < J(ρ, ϕ(ab)) ⇐⇒ aa ≻ ab. (2)

In other words, we assume that we can define a cost such
that “cheaper” alternatives are more like the ideal. What this
means is that, givenJ , ρ, and the features corresponding to
two “apples,” we know exactly which of the two is more
“orangelike.” To make this ability to compare alternatives
using J explicit, we define an associated output maphJ :
U → Y, that sorts pairs of alternatives in this fashion; i.e.,

hJ(aa, ab) =

{

(aa, ab) J(ϕ(aa)) > J(ϕ(ab))
(ab, aa) J(ϕ(ab)) > J(ϕ(aa))

.

The significance ofhJ is that it is the comparator function
consistent with (2). Our goal, then, is to determine aρ
(for fixed J) and hence a cost function such thathJ(u) =
h(u) ∀u ∈ U .

In other words (and for compactness of notation defining
J(ρ, ϕ(Ek)) = Jk(ρ) for the special case when we are
evaluating the cost of an alternative in the experimental set)
the problem we are trying to solve is that of selecting the
parameterρ such that,

1) The pairwise comparisons are consistent with the costs,
i.e. Ji(ρ) < Jj(ρ), ∀(Ei, Ej) ∈ R.

2) ρ satisfies some feasibility constraintπ(ρ) = 0.

We letΩ(E) denote the set of all such feasibleρ parameters
and given that at least one feasibleρ exists, we want
moreover to selectρ ∈ Ω(E) in such a way that it minimizes
the smallest of all the alternative costs.

Summarizing these points, what we want to achieve is to
solve the min-min problem

min
i∈P

{

min
ρ∈R

N

Ji(ρ)

}

subject to the constraint

ρ ∈ Ω(E).

Before we can actually solve this problem, we first need to
establish some necessary conditions for the existence of a so-
lution associated with ensuring that the pairwise comparisons
are rational in the sense that they induce a partial order on
the alternatives. For this, we need to introduce the notion of
a directed alternative graphGE = (E ,R), where the vertex
set is equal the presented alternatives, and a directed edge
betweenEi andEj exists if and only if there exists ayk ∈ R
such that(Ei, Ej) = yk. In other words, each edge encodes a
judgment about which of the vertices (alternatives) adjacent
to it is “more orangelike.”



Now, in order to ensure that we have indeed a partial order,
i.e. that we can not end up with situations where

Ei ≻ Ej , Ej ≻ Ek, Ek ≻ Ei,

we have to assume thatGE is acyclic. Assuming that this is
indeed the case, and that the feasible setΩ(E) is non-empty,
then the min-min problem can in fact be solved by solving
a total of at mosto(E) ≤ P problems, where

o(E) = card(O(E)),

andO(E) is the set of all alternatives that won at least one
comparison while not losing any comparison, i.e.

O(E) =







i ∈ P

∣

∣

∣

∣

∣

∣

∃Ej s.t.
(Ei, Ej) ∈ R

and
6 ∃Ek s.t. (Ek, Ei) ∈ R







.

Using the terminology from graph theory, what these nodes
thus satisfy is that they have out-degree greater than zero
and in-degree equal to zero.

B. The Transitive Reduction

In fact, for many graphs, the number of constraints when
solving each of these subproblems can be reduced; i.e., we
can remove edges from the graph, and thereby reduce the
execution time of the optimization algorithm. For instance,
consider the graphG3 given in Figure 2. For this graph, edge

12

3 4

G3

12

3 4

G4

Fig. 2. Two equivalent alternative graphs.

(2, 4) imposes the constraint thatJ2(ϕ) < J4(ϕ), yet since
(2, 3) imposesJ2(ϕ) < J3(ϕ) and (3, 4) imposesJ3(ϕ) <
J4(ϕ), then by transitivity (2, 3) and (3, 4) collectively
render(2, 4) redundant, and hence the alternative graphG3

can be replaced byG4. That is to say, if we optimize the
parametrized cost subject to all the constraints represented
by G4, then all of the constraints represented byG3 will
automatically be satisfied. From a graph-theoretic point of
view, G4 is the transitive reductionof G3.

Formally, using Aho’s definition [18],Gt is the transitive
reduction of a graphG if,

1) there is a directed path from vertexu to vertexv in
Gt if and only if there is a directed path fromu to v
in G, and

2) there is no graph with fewer arcs thanGt satisfying
condition 1.

In the case of a directed acyclic graph, the reductionGt

(which is unique) is a subgraph ofG. It was shown in
[18] that computation of the transitive reduction is of the
same complexity as transitive closure, and hence matrix
multiplication; thus, the transitive reduction can be found in

O(nlog27) steps using Strassen’s algorithm [19]. (See, e.g.,
[20], [21]).

III. C OST MODELS

In the following sections, we will present two different,
related examples of cost functions, and investigate the im-
plications of each choice.

A. Linear Cost Models

As an example, consider a situation in which the alter-
native costs are linear, i.e.Ji = ρT ϕ(Ei) and all feature
vectorsϕ are non-negative. In that case, the min-min problem
becomes

min
i∈P

{

min
ρ∈R

N

ρT ϕ(Ei)

}

,

subject to the constraints






ρT ϕ(Ei) ≤ ρT ϕ(Ej), ∀(Ei, Ej) ∈ R
1

T ρ = 1
ρ ≥ 0,

where 1 = (1, . . . , 1)T , and where we, for simplicity
have assumed thatN = q, i.e. the number of parameters
(the dimension ofρ) is equal to the number of features
(the dimension ofϕ). We moreover replaced the pairwise
comparison constraints with non-strict inequalities.

We directly note that sinceρ ≥ 0, the notion of dominance
allows us to reduce the number of constraints and possibly
alsoo(E) in the case when the problem is linear. In particular,
an alternativeEi is said to linearly dominate alternativeEj if
(Ei, Ej) ∈ R and ϕi ≤ ϕj , where the inequality is taken
componentwise. And,ρ ≥ 0 directly implies that if this
is indeed the case thenρT ϕi ≤ ρT ϕj and as such this
constraint can be removed from the problem altogether. That
is, the structure imposed by our choice of linear cost function
allows for additional simplifications beyond those impliedby
transitivity alone.

B. Metric Cost Models

Colloquially, when comparing various alternatives, we
often speak of options as being “closer to what we would
like,” or of being “far from perfect.” Motivated by this
everyday use of geometric language, we would now like to
considermetric costsof the form,

Ji = d(ϕ(Ei), ϕ(ā)) (3)

where ā ∈ A is the “ideal” or “most orangelike” apple –
which is unknown to us, the experimenters – andd(· , · ) is
a metric in the inner product spaceF (We will assume the
usual Euclidean metric and inner product, but what follows
is readily generalizable to other inner products.) In this case,
J is entirely parametrized byρ = ϕ(ā), so the goal will be
to determine this ideal feature vector from responses.



What does an individual responsey = (E1, E2) tell us
about the location ofϕ(ā)?1 Simply,

ϕ(ā) ∈
{

ϕ | nT ϕ ≥ b
}

⇐⇒ d(ϕ2, ϕ(ā)) ≥ d(ϕ1, ϕ(ā)). (4)

whereϕ1 = ϕ(E1), ϕ2 = ϕ(E2), n = (ϕ1 − ϕ2), and b =
1
2nT (ϕ1 +ϕ2). (This follows immediately from Lemma 3.1,
which is given at the end of this section.) Hence, a sequence
of n outputs y1, y2, . . . , yn (with yk = (Ek

1 , Ek
2 ), ϕk

j =
Ek

j ∀k = 1, 2, . . . , n; j = 1, 2) implies,

ϕ̄ ∈

n
⋂

k=1

{

ϕ | (ϕk
1 − ϕk

2)T ϕ >
1

2
(ϕk

1 − ϕk
2)T (ϕk

1 + ϕk
2)

}

(5)
or equivalently,ϕ̄ is a solution to











(ϕ1
1 − ϕ1

2)
T

(ϕ2
1 − ϕ2

2)
T

...
(ϕn

1 − ϕn
2 )T











ϕ̄ >
1

2











(ϕ1
1 − ϕ1

2)
T (ϕ1

1 + ϕ1
2)

(ϕ2
1 − ϕ2

2)
T (ϕ2

1 + ϕ2
2)

...
(ϕn

1 − ϕn
2 )T (ϕn

1 + ϕn
2 )











(6)

where “>” indicates componentwise inequality.
The geometric interpretation of (4) is thatϕ̄ must lie within

a half-plane in feature space. Likewise, (5) means thatϕ̄
must lie within the intersection of the half-planes; this isa
polytope inF .

Before continuing, we now state the Lemma referred to
earlier in this section; its statement is given more generally
than (4). The geometric interpretation is that comparisons
between distances relative to reference points can be inter-
changed with signed point-plane distance tests.

Lemma 3.1: Letϕ1, ϕ2, ϕ̄ be any vectors in the inner
product spaceRm for somem ∈ N (with the usual inner
product), and let⋆ be a binary relation from the set,{=, <
, >,≤,≥}. Then,

ϕ̄ ∈
{

ϕ | nT ϕ⋆b
}

⇐⇒ d(ϕ2, ϕ̄)⋆d(ϕ1, ϕ̄)

wheren = (ϕ1 − ϕ2), and b = 1
2nT (ϕ1 + ϕ2).

The proof of this is based on the Polarization Identity and
is straightforward.

1) An asymptotic observer for metric cost models:Sup-
pose we have access to a very long (infinite) sequence of
comparisonsy0, y1, y2, ... ∈ Y, perhaps as the result of
passive monitoring over an extended period of time, and we
would like to know the features̄ϕ of the ideal alternative. If
alternatives are presented at random to the comparator, can
we construct an asymptotic observer forϕ̄ which can avoid
storing all of the very (infinitely) many constraints implied
by this sequence? It turns out that the answer is yes, and

1In this section, the subscript 1 and 2 are used to denote the first and
second elements ofy (i.e., the more- and less- ideal alternatives), rather
than the particular elements ofE indexed by 1 and 2.

exactly such an observer is given by,

ϕ̃k+1 =

{

P kϕ̃k + αkbk

(nk)T (nk)n
k if (nk)T ϕ̃k < bk

ϕ̃k otherwise
(7)

P k = I − αk (nk)(nk)T

(nk)T (nk)
(8)

nk = (ϕk
1 − ϕk

2) (9)

bk =
1

2
nT (ϕk

1 + ϕk
2) (10)

for any sequence of observer gainsαk ∈ (0, 2), regardless of
ϕ̃0. That is,ϕ̃ converges tōϕ in probability ask → ∞, given
a few assumptions; we will prove this shortly in Theorem 3.1.
Moreover, note that, although (7-10) are broken down into
separate expressions for clarity of presentation, they arein
fact all functions ofϕ̃k, so this observer can be implemented
with only dim{F} real memory elements.

Geometrically, the observer (7-10) operates through a
series of projections (or under/over-projections, ifα 6= 1),
as illustrated in Figure 3, with each projection bringing the
estimateϕ̃k of the ideal closer to the true ideal,̄ϕ. A proof
of convergence follows as Theorem 3.1.

ϕ
0

2

ϕ
0

1 ϕ̄
ϕ

1

2

ϕ
1

1

ϕ
2

2

ϕ
2

1

ϕ̃
0

ϕ̃
1,2

ϕ̃
3

Fig. 3. A series of the observer’s estimates, withαk = 1 ∀k. The initial
estimate isϕ̃0, and the true ideal is given bȳϕ. In step 0, the observer
projectsϕ̃0 onto the plane (solid line) corresponding to the measured output
y0 = (ϕ0

1
, ϕ0

2
) to produceϕ̃1. In step 1, the observer makes no changes to

its estimate, becausẽϕ1 is on the correct side of the plane corresponding
to y1; henceϕ̃2 = ϕ̃1. In step 2, the observer projects̃ϕ2 onto the plane
corresponding toy2 to create the estimatẽϕ3, which is yet closer tōϕ.

Theorem 3.1: Letuk = (ak
a, ak

b ) be a sequence of random
alternatives issued as input to a comparator system with
metric cost function as defined in (3), such that the features
ϕk

a, ϕk
b ∈ F of these alternatives are i.i.d. random variables

drawn according to any probability density functionp(ϕ)
which is nonzero in an open ballB(ϕ̄, r) = Br around the
optimal alternative,ϕ̄. Then, the asymptotic observer given
by (7) converges tōϕ in probability.
Proof :

1. If (nk)T ϕ̃k > bk, then d(ϕ̃k+1, ϕ̄) < d(ϕ̃k, ϕ̄). The
distancesd(ϕ̃k, ϕ̄) and d(ϕ̃k+1, ϕ̄) are related through the
Polarization Identity by (where∆k = ϕ̃k+1 − ϕ̃k),

||ϕ̃k+1 − ϕ̄||2 = ||ϕ̃k + ∆k − ϕ̄||2 =

||ϕ̃k − ϕ̄||2 + ||∆k||2 + 2(ϕ̃k − ϕ̄)T ∆k

so, it order to show that||ϕ̃k+1 − ϕ̄|| < ||ϕ̃k − ϕ̄||, it is
sufficient to demonstrate

||∆k||2 + 2(ϕ̃k − ϕ̄)T ∆k < 0. (11)



From (7, 8),

∆k =

(

I − ak (nk)(nk)T

(nk)T (nk)

)

ϕ̃k +
αkbk

(nk)T (nk)
nk − ϕ̃k

=
α

(nk)T (nk)

(

bk − (nk)T ϕ̃k
)

nk (12)

so, substituting∆ into (11) (and dropping the superscript
indicesk),

α2

nT n
(b − nT ϕ̃)2 + 2

α

nT n
(b − nT ϕ̃)nT (ϕ̃ − ϕ̄) < 0 (13)

or equivalently, so long asα > 0 (as we require),
(

b − nT ϕ̃
) [

α
(

b − nT ϕ̃
)

+ 2nT (ϕ̃ − ϕ̄)
]

< 0. (14)

Since by assumptionnT ϕ̃ < b, this is satisfied iff the second
factor is negative; that is,

α
(

b − nT ϕ̃
)

+ 2nT (ϕ̃ − ϕ̄) =

αb + (2 − α)nT ϕ̃ − 2nT ϕ̄ < 0. (15)

or equivalently

1

2
αb +

(

1 −
1

2
α

)

nT ϕ̃ < nT ϕ̄. (16)

SincenT ϕ̃ < b, and by Lemma 3.1,nT ϕ̄ ≥ b, this is satisfied
so long asα ∈ (0, 2), as we require.

2. The sequencedk = ||ϕ̃k − ϕ̄k||, k = 0, 1, 2, ... is
nonincreasing.In the second case of (7),̃ϕk+1 = ϕ̃k; this is
nonincreasing. In the first case,(nk)T ϕ̃k > bk, sodk+1 < dk

by point 1 above.
3. g.l.b.(dk) = 0 with unit probability. By positivity of

d(· , · ), zero is a lower bound. To show that this is the
greatest such bound, consider someǫ > 0 and suppose that,
at iterationm, d(ϕ̃m, ϕ̄) = ǫ. Now, let z = min(r, ǫ/2), and
consider the open ballsB1 = B(c1, z/4), B2 = B(c2, z/4),
where the center pointsc1, c2 are defined,

cj = ϕ̄ +
ϕ̃ − ϕ̄

||ϕ̃ − ϕ̄||

(2j − 1)

4
z;

additionally, letϕ1 ∈ B1, ϕ2 ∈ B2. Then by Lemma 3.1, we
can confirm that̄ϕ andϕ̃ are on opposite sides of the plane
(and hence, that a projection will occur) by verifying that,

||ϕ2 − ϕ̃|| < ||ϕ1 − ϕ̃|| (17)

||ϕ2 − ϕ̄|| > ||ϕ1 − ϕ̄||. (18)

Considering the first of these, we note by the triangle
inequality,

||ϕ2 − ϕ̃|| ≤ ||ϕ2 − c2|| + ||c2 − ϕ̃|| < 1
4z + ||c2 − ϕ̃||

whereas, by the inverse triangle inequality,

||ϕ1 − ϕ̃|| ≥ | ||ϕ1 − c1|| + ||c1 − ϕ̃|| |

≥ ||c1 − ϕ̃|| = 1
2z + ||ϕ2 − c2||

so this is indeed the case. Considering the second inequality
(18), we have likewise,

||ϕ1 − ϕ̄|| ≤ ||ϕ1 − c1|| + ||c1 − ϕ̄|| < 1
4z + 1

4z = 1
2z

and

||ϕ2 − ϕ̄|| ≥| ||ϕ2 − c2|| − ||c2 − ϕ̄|| |≥ 3
4z

so this inequality holds as well. Therefore,any ϕ1, ϕ2 from
B1, B2 are associated with a plane which separatesϕ̃ from
ϕ̄ and hence triggers a projection. SinceB1 and B2 have
nonzero measure, and are subsets ofBr in which p(· ) is
nonzero, then the probabilities for this iterationP1 = Pr(“a
point is selected inB1”) and P2 = Pr(“a point is selected
in B2”) are both nonzero, and therefore, since theuk are
independent,Pboth = Pr(“one point is selected inB1 and
the other is selected inB2”) = P1P2 is nonzero, and the
probability that this occurs forat leastone iterationk > m
is given by1−

∏∞

k=m

(

1 − P k
both

)

= 1 or in other words, with
probability one, there exists aq > m such thatP ((nq)T ϕ̃q >
bq). Then, by point 1,d(ϕ̃q , ϕ̄) < d(ϕ̃m, ϕ̄) = ǫ, and soǫ,
with unit probability, cannot be a lower bound. Sincedk

is a nonincreasing sequence inR and g.l.b.(dk) = 0, dk

converges to 0 and thus̃ϕ converges tōϕ in probability.

An example of the estimate trajectory in feature space
generated by such an observer is given in Figure 4.For this
example,F = R

2, and features were drawn from a uniform
distribution in the square[−20, 20]× [−20, 20]. The estimate
evolves from its initial condition,̃ϕ0 = (−15, 15)T to near
the idealϕ̄ = (17, 0)T .

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

Fig. 4. Example estimate trajectory for observer (7-10) forαk = α = 1,
with F = R

2. The estimate begins at̃ϕ0 = (−15, 15)T , and approaches
the idealϕ̄ = (17, 0)T .

IV. A PPLES ANDORANGES

To demonstrate the application of these ideas, photos of
nine apples were shown to an audience of thirteen people in
a number of pairwise experiments.

Each apple was described by a 15-dimensional feature
vector, containing (1-3) the average color in HSB (hue,
saturation, brightness) color space, (4-6) the average color
in RGB color space, (7) the color variance, (8-10) width,
height, and the ratio of the two, (11-12) stem length, and



Fig. 5. An example of a pairwise comparison between two apples, relative
to the orange.

angle relative to apple, (13-14) dimple angle and depth, and
(15) roundness.

The partial order over the apples was thus generated by
having a group of people make a number of randomly
selected, pairwise comparisons (as the one depicted in Figure
5). Represented as a directed alternative graph, the results of
these experiments are given as Figure 6.

E7

E8

E9

E5 E6

E2

E4

E3

E1

Fig. 6. The DAG corresponding to the apple experiments.

This results in the following optimal cost parameterρ (all
components ofρ not listed below are 0.0000):

ρ1 = 0.0505 (Hue)
ρ3 = 0.1861 (Brightness)
ρ5 = 0.2846 (Green)
ρ8 = 0.2834 (Width)
ρ11 = 0.1953 (Stem Length)

which tells us that the single most important attribute that
distinguishes apples from each other relative to oranges isthe
fifth dimension of the parameter space, namely, the amount
of green in RGB colorspace; this is closely followed, perhaps
surprisingly, by the width of the apple.

V. CONCLUSIONS

In this paper, we present a method for inferring the
underlying cost structure that we assume is implicitly com-
puted when people make comparisons between alternatives.
In particular, given a collection of such comparisons, we
produce a partial order over the set of alternatives, which,in
turn, allows to infer the corresponding cost function (given a
parametrized cost model and certain regularity assumptions
on how people act.)

An example application of this is given in terms of
comparing apples and oranges, and we recognize that this

may not be the world’s most compelling application in itself.
Instead, we view this as a first step towards understanding
and solving the very important question of Programming by
Demonstration in robotics, where a robot is asked to act
“similarly” to a human operator.
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