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Abstract— In this paper, we try to understand what people to be similar.” We should note, already at this point, that a
mean when they say that two objects are “similar.” This is an  related idea is pursued in [10], [11]. But, in those refesmc
important question in the area of human-robot interactions the basic premise is not that one is given a collection of
where robots must interpret human movements in order to act - . .
in a “similar” manner. Specifically, we assume that we are gien comparisons, but .rather a m_etr_'ca"y ranked collection of
a collection of empirically generated pairwise comparisos €xamples. Whats inherently similar between those works
between a subset of so-called alternatives (members of a giv and the work presented in this paper is that the empirical
set), which produces a partial order over the set of alterndves.  data is to be used to find an underlying cost function that it

Based on this partial order, an inverse optimization problen s hostlated people use when making judgments about the
is solved, producing a cost associated with each alternagv . ". . . .
similarity of objects and motions.

that is consistent with the partial order. This cost is, morever, . .
assumed to be generative in that it can be used to select the It should also be noted that in econometrics, the problem

globally best alternative. An experimental study involvirg the  of inferring people’sutility functions from data is well-
comparison of apples and oranges is presented to highlighhe  studied. What is different with this problem is that the
operation of the proposed approach. objective typically is to either understand game theoretic
decision making strategies in a market or stochastic ggttin
(e.g., [12], [13], [14]), or to locate clusters of consumers
As the saying goes, one can not compare apples amdth similar preferences (e.g., [15], [16]). This paperdslty
oranges. But why not? It is clear that some apples loo&bout finding deterministic “similarity” measures that fiet
more like oranges than others. One can thus ask the quest@mnpirical data, and, as such, it has an entirely differectigo
“What makes apple X look more like an orange than appland objective.
Y?” Or, more interestingly (yet also more absurdly), “If dg@p
X is in fact a robot apple, how should it act in order to Il. PROBLEM FORMULATION
make it more like an orange?” These questions may seefn Experimentally Generated Comparisons
like nonsense, but this is exactly what mobile robots are Let .4 be the set of all possible objects (“apples,” or robot
asked to do in some areas of human-robot interactions, eagtions) that we would like to compare relative to some
Programming by Demonstration, where humans (orangeigleal (“the orange,” or a human action) — most generally,
ask robots (apples) to behave “like” them, e.g. [1],[2],,[3]we will refer to these aslternatives To begin, we will
[4]. assume very little aboutl; it may not even be countable.
The basic idea behind the Programming by Demonstratidfiwe are interested in programming a particular robot by
paradigm is that the human operator should be able to idemonstration,4 might be the set of all possible motions
struct robots (typically manipulator arms) how to act witho that the robot can perform. If we are comparing actual
having to write code or use any other type of formal interfacapples to oranges in order to find the most “orangelike”
language. Instead, the operator should be able to “showtpple, thend would be the set of all conceivable apples.
the robot how to act. But, since the robot typically has &o capture the subjectivity of comparing elements of this
completely different set of dynamical constraints, degrefe set to the ideal, suppose that we can conduct experiments,
freedom, and even spatial scales, it is not at all clear what each of which we ask human observers to perform a
it should be doing in response to the human operator. Fpairwise comparison of elements df, specifically, assume
more on these issues, see for example [5],[6],[7],[8],[9]. that we can pose questions of the form, “Which of these
In this paper, we address this seemingly ill-posed problemmpples, X or Y, is more orangelike?” This particular form
by formulating a version of it in such a way that it isof experiment, it should be noted, has the advantage over
amenable to analytical solution, while still being based onther forms (e.g., rankings on a scale from 1-10) that it is
subjective judgments of “similarity.” The reason for irtsig  less prone tdatch effectsa psychological phenomenon in
on the subjective element is that, at the end of the dawhich people’s rankings are only accurate among objects
“similarity” is to be understood as “what people considecompared at around the same time [15], [17].

|. INTRODUCTION



We will assume for our purposes that the human observeds exactly this, as will be described later in the paper.)
we ask to compare alternatives are “similar,” in that theydte Moreover, for the special case when we are evaluating the
to have the same opinions about which alternatives are mdatures of an alternative in the experimental &etve will
like the ideal, so we can treat their responses meaningfulfgr compactness of notation write(&;) = ¢y.
in an aggregate sense (i.e., we will not be concerned with Now, suppose that we can form a parametrized cést,
Condorcet’s paradox). RY x F — R that, given some parameterc R", maps the

Given this assumption, one can think of the group of hufeatures (an element of) of any alternative in4 to a real
mans as a generalizedmparator or sorting function, which number, and that
it will be our goal to “learn” from output measurements.

More specifically, we assume that the human observers are J(p,p(aa)) < J(p, plap)) <= aa = ap. )

presented with an unsorted pair of alternatives as iNputy other words, we assume that we can define a cost such

and t_ha_t they “output_" a correspo_nding sorted pair_, ordere[ﬂat “cheaper” alternatives are more like the ideal. Whast th
by sw_mlanty to the ideal. That is, the humans in thes%eans is that, gived, p, and the features corresponding to
experlm_ents behave as a magirom the set/ = A x A two “apples,” we know exactly which of the two is more
of questlons, to the s€¢ = A x A of answers, wheré is “orangelike.” To make this ability to compare alternatives
defined, using J explicit, we define an associated output niap:
h(aa, a) = { (aa,ap) aq > ap (1) U — Y, that sorts pairs of alternatives in this fashion; i.e.,

ap, a ap > a

o where we Usar - ¢ ,,(tg d;iwtei e hy(asa) = { (aw ) J(@(a0) > J(p(ar)
i a b 101€ g IS MOre orange ’ (ap,aq)  J(p(av)) > J(p(aq))
like’ than a;,.” From this point of view, an “experiment” — in
which we present alternatives to human observers and obtdife significance of,; is that it is the comparator function
similarity judgments — is really just a function evaluatioh ~consistent with (2). Our goal, then, is to determinepa
h. (for fixed J) and hence a cost function such that(u) =

Now let £ C A be a finite, indexed subset of alternatived:(u) Yu € U.
that we, the experimenters, will actually present to the In other words (and for compactness of notation defining
human observers; we will refer to these as ¢xperimental /(0. ¥(Ex)) = Jk(p) for the special case when we are
alternatives The reason for defining this set is that, ideally€valuating the cost of an alternative in the experimentgl se
we would like to be able to present only a few alternativethe problem we are trying to solve is that of selecting the
(i.e., those in the se€), in order to draw conclusions Parametep such that,
about preferences oveill possible alternatives (everything 1) The pairwise comparisons are consistent with the costs,

in A — which may not even be countable). Additionally, let ie. Ji(p) < Jj(p), V(& &) € R.

P ={1,2,..., P} be the index set associated wifh we 2) p satisfies some feasibility constraintp) = 0.

define this for convenience so that we may refer to i we let2(€) denote the set of all such feasiblearameters
alternative,” which we will abbreviaté; € £. and given that at least one feasibje exists, we want

Next, suppose that we ask the human observers to perfoffiyreover to selegt € Q(€) in such a way that it minimizes
a series of pairwise comparisons of alternatives. That &, Whe smallest of all the alternative costs.

present elements & two-at-a-time to human observers in
an indexed set of questio® = {u!,u? ...} CExECU

to obtain the indexed set of responses= {y',y?,...} =
{h(u),h(u?),...} C €x E C Y. In other words, thinking , ,

of the humans again as a comparator, we input a sequence ey mﬁ}v‘]i(p)
of unsorted pairs, and receive a corresponding sequence of re

sorted pairs as output; from this, we hope to deduce the inngubject to the constraint

workings of the comparator.

Summarizing these points, what we want to achieve is to
solve the min-min problem

peQE).
uwel b yey Before we can actually solve this problem, we first need to
establish some necessary conditions for the existencemf a s

lution associated with ensuring that the pairwise compass
Fig. 1. Human as comparator — a memoryless nonlinear system are rational in the sense that they induce a partial order on
the alternatives. For this, we need to introduce the notfon o

We will also assume that a vector of feature scqrés) €  a directed alternative grapltie = (€, R), where the vertex
F = RY associated with each alternatives A is available set is equal the presented alternatives, and a directed edge
automatically from experimental data. If we are comparingetweeng; and&; exists if and only if there exists @ € R
actual apples to oranges, such features might include thach that&;, &;) = y*. In other words, each edge encodes a
average RGB colors of the apples, their dimensions alorjgdgment about which of the vertices (alternatives) adjace
various directions, and similar measurements. (In fact, w® it is “more orangelike.”



Now, in order to ensure that we have indeed a partial ordef)(n'°927) steps using Strassen’s algorithm [19]. (See, e.g.,
i.e. that we can not end up with situations where [20], [21]).

51' b gj, Ej - 5k, 5/@ - 51'7

1. CosSTMODELS
we have to assume thégt is acyclic. Assuming that this is _ ) _ )
indeed the case, and that the feasiblety) is non-empty, [N the following sections, we will present two different,
then the min-min problem can in fact be solved by solving‘je_late_d examples of cost functions, and investigate the im-
a total of at mosb(£) < P problems, where plications of each choice.
o(&) = card O(&)), A. Linear Cost Models

and (’)(6_) is the set of all alternatives that won at least one ag an example, consider a situation in which the alter-
comparison while not losing any comparison, i.e. native costs are linear, i.el; = pTp(&;) and all feature

(EL,E)ER vectorsy are non-negative. In that case, the min-min problem

O) =1ieP|3E st and . becomes
Er st (&, &) ER
Al (&, ) min{ min pT (&) ¢,

Using the terminology from graph theory, what these nodes €P | peRY

thus satisfy is that they have out-degree greater than zero . _
and in-degree equal to zero. subject to the constraints

B. The Transitive Reduction pro(&) < phe(&), V(E,&) eR

T,
In fact, for many graphs, the number of constraints when 1 >p =1
solving each of these subproblems can be reduced; i.e., we pz0,
can remove edges from the graph, and thereby reduce tvr\}ﬁere 1 = (1,...,1)T, and where we, for simplicity

execution time of the optimization algorithm. For instance

consider the grapli; given in Figure 2. For this graph, edgehave assumed thav' = g, i.e. the number of parameters

(the dimension ofp) is equal to the number of features
(the dimension ofp). We moreover replaced the pairwise

k ! k ! comparison constraints with non-strict inequalities.
We directly note that since > 0, the notion of dominance
Gs G allows us to reduce the number of constraints and possibly
alsoo(&) in the case when the problem is linear. In particular,
9 1 9 1 an alternativef; is said to linearly dominate alternati if

(&,&5) € R and ¢, < ¢;, where the inequality is taken
Fig. 2. Two equivalent alternative graphs. componentwise. Andp > 0 directly implies that if this

is indeed the case thep’p; < pTp; and as such this
(2,4) imposes the constraint that(p) < J4(¢), yet since constraint can be removed from the problem altogether. That
(2,3) imposes.J,(¢) < J3(¢) and (3,4) imposesJs(p) < IS, the structure imposed by our choice of linear cost fumcti
Ji(p), then by transitivity (2,3) and (3,4) collectively allows for additional simplifications beyond those implizd
render(2,4) redundant, and hence the alternative grggh transitivity alone.
can be replaced bg,. That is to say, if we optimize the
parametrized cost subject to all the constraints repredentB. Metric Cost Models
by G4, then all of the constraints represented Gy will

automatically be satisfied. From a graph-theoretic point OfftColloquw;l(lly,f Wht?n compbar_lng “v?rloust alter:ntatlves, WIZ
view, G, is thetransitive reductiorof Gs. often speak of options as being “closer to what we wou

Formally, using Aho’s definition [18]g? is the transitive like," or of being “far frpm perfect.” Motivated by this
reduction of a graplg if, everyday use of geometric language, we would now like to

. . . considermetric costsof the form,
1) there is a directed path from vertexto vertexwv in

G' if and only if there is a directed path fromto v J; = d(p(&), (a)) A3)
in G, and 7

2) there is no graph with fewer arcs thgh satisfying wherea e A is the “ideal” or “most orangelike” apple —
condition 1. which is unknown to us, the experimenters — alid, - ) is

In the case of a directed acyclic graph, the reduciin a metric in the inner product spade (We will assume the
(which is unique) is a subgraph @. It was shown in usual Euclidean metric and inner product, but what follows
[18] that computation of the transitive reduction is of thas readily generalizable to other inner products.) In tlase;
same complexity as transitive closure, and hence matrik is entirely parametrized by = ¢(a), so the goal will be
multiplication; thus, the transitive reduction can be fdin to determine this ideal feature vector from responses.



What does an individual responge= (&1,&2) tell us  exactly such an observer is given by,

about the location of(a)?* Simply, 5 Kk . _
f(a) ply e { Prgh 4 (n;f‘)Tb(nk)nk if (nF)T gk < bk @
_ _ _ Bk otherwise
p(a) € {¢|n"o 2 b} <= d(p2,0(@) = dlp1.9(@)- (4) L
koo _ g (n7)(n")
PY = I —a" (8)
wherep; = ¢©(€1), w2 = ¢(E2), n = (p1 — p2), andb = (n*)T(n¥)
InT(p1+ o). (This follows immediately from Lemma 3.1,  n* = (¢} —¢5) (9)
which is given at the end of this section.) Hence, a sequence ,, 1 1 &
of n outputsy',y?,...,y" (with y* = (EF,&5), 0} = o= 2" (7 +5) (10)
EFVE=1,2,...,n; j=1,2)implies, for any sequence of observer gainfs € (0, 2), regardless of

@Y. That is,$ converges ta in probability ask — oo, given
n e 1, 4 Tk . a few assumptions; we will prove this shortly in Theorem 31
e ﬂ @l (pf —¥3) ¢ > 2(%’1 ©3)" (P71 + ¥3) Moreover, note that, although (7-10) are broken down into
k=1 (5) separate expressions for clarity of presentation, theyirare
fact all functions of”, so this observer can be implemented
with only dim{F} real memory elements.
Geometrically, the observer (7-10) operates through a

or equivalently,p is a solution to

1 I\T 1 INT/(, 1 1
E% B gp%gT Ega% - w%;T?p; i %g series of projections (or under/over-projectionseif 1),
1T v G > 1 1o w2 T en (6) as illustrated in Figure 3, with each projection bringing th
: 2 : estimateg”* of the ideal closer to the true ideat, A proof
(o — )T (e — )T (o7 + 1) of convergence follows as Theorem 3.1.

where “>" indicates componentwise inequality.
The geometric interpretation of (4) is thaimust lie within

a half-plane in feature space. Likewise, (5) means that il
must lie within the intersection of the half-planes; thisais
polytope inF.

Before continuing, we now state the Lemma referred to o,
earlier in this section; its statement is given more geheral s 2

than (4). The geometric interpretation is that comparisons
between distances relative to reference points can be- inter

changed with signed point-plane distance tests. Fig. 3. A series of the observer's estimates, with = 1 V. The initial

Lemma 3.1: Letp;, ¢, ¢ be any vectors in the inner esti_mate~i)s¢0, and the true iqeal is given byg. In step 0, the observer
projects@? onto the plane (solid line) corresponding to the measurépubu

product spaceR™ for somem € N .(W|th the usual inner y° = (9, ¢9) to producep!. In step 1, the observer makes no changes to

product), and letk be a binary relation from the sef—=, < its estimate, becausg! is on the correct side of the plane corresponding
> < >}_ Then to y'; hence@? = . In step 2, the observer projectg onto the plane

== ' corresponding ta,2 to create the estimat@?, which is yet closer tap.

@€ {o|n"okb} <> d(p2, ¢)kd(p1,?) Theorem 3.1: Let* = (a¥, al) be a sequence of random
alternatives issued as input to a comparator system with
wheren = (o1 — ¢2), andb = %nT(spl + 2). metric cost function as defined in (3), such that the features
T L . ko ok ; o ;
The proof of this is based on the Polarization Identity anéfa: ¥, € /- of these alteratives are i.i.d. random variables
is straightforward. drawn according to any probability density functigriy)

which is nonzero in an open bal¥(@,r) = B, around the

1) An asympotic observer for metric cost modeSup- %;Ptimal alternative,p. Then, the asymptotic observer given

pose we have access to a very long (infinite) sequence T o

comparisonsy’, y*,y?,... € Y, perhaps as the result of E,y (7)fc‘onverges (@ in probability.

passive monitoring over an extended period of time, and werlctohc ‘(nk)TgZ?k > Bk, thend(g"+1,5) < d(¢*, ). The
would like to know the feature$ of the ideal alternative. If distancesd (3", 2) and’d(sakﬂ 2) a;e related tﬁroﬁgh the
alternatives are presented at random to the comparator, G arization Ioientity by (wherék — G+ k)

we construct an asymptotic observer forwhich can avoid '
storing all of the very (infinitely) many constraints implie |@FH! — | = ||g" + AF — ¢||? =
by this sequence? It turns out that the answer is yes, and % — 3|2 + ||AF))? + 2(pF — )T AF

so, it order to show thaljg"* — ¢|| < ||@F — ¢, it is

1In this section, the subscript 1 and 2 are used to denote tsteafid  sufficient to demonstrate
second elements af (i.e., the more- and less- ideal alternatives), rather e i Tk
than the particular elements 6findexed by 1 and 2. [|A%]]* +2(@" — @) A¥ < 0. (11)



From (7, 8), and

T _ _
Ab = <1 k)) k)nk_¢k ez = @Il 21 llp2 = el = llez = Il 12 3=
a ( ()T ) & (12) so this inequality holds as well. TherefoBny ¢, p2 from
(n¥)T (nk) " By, B, are associated with a plane which separgidsom

@ and hence triggers a projection. Singg and B, have

so, substitutingA into (11) (and dropping the superscnptnonzero measure, and are subsetsBofin which p(-) is

indicesk), nonzero, then the probabilities for this iteratiéh = Pr(“a
a? @ Ty T~ point is selected inB;”) and P> = Pr(“a point is selected
nTn (b—n"@)"+ 2nTn(b —nen(p-9)<0 (A3) 4, By") are both nonzero, and therefore, since tifeare

or equivalently, so long as > 0 (as we require), independentPyoin = Pr(“one point is selected iB; and

the other is selected iB>") = P, P, is nonzero, and the
(b—n"@) [a(b—n"¢) +2n" (p—¢)] < 0.(14) probability that this occurs foat leastone iterationk > m
is given byl —J[,~ PByw) = 1 orin other words, with
iff the second probablhty one, If[here( eXISthal m such thatP((n?)T 9 >
b?). Then, by point 14(¢9, ¢) < d(¢™,®) = €, and Soe,
ab-—n"@)+2n" (g—9) = with unit probability, cannot be a lower bound. Sindé
ab+ (2 —amTe—20Tg < 0. (15) is a nonincreasing sequence fand g.1.b.(d*) = 0, d*
converges to 0 and thus converges tap in probability. m

Since by assumption” ¢ < b, this is satisfied
factor is negative; that is,

or equivalentl
. y An example of the estimate trajectory in feature space

lab+ <1 _ la) nT3 < nTo. (16) generated by such an observer is given in Figure 4.E0r this
example F = R?, and features were drawn from a uniform

distribution in the squarp-20, 20] x [-20, 20]. The estimate

evolves from its initial conditiong® = (—15,15)” to near

the idealp = (17,0)7.

Sincen” ¢ < b, and by Lemma 3.1, % > b, this is satisfied
so long asx € (0,2), as we require.

2. The sequence® = ||¢*¥ — ¢*||, k = 0,1,2,... is
nonincreasingln the second case of (7! = &*; this is
nonincreasing. In the first cagei* )7 ¢* > b, sod*+! < d*
by point 1 above.

20

3. g.1.b.(d*) = 0 with unit probability. By positivity of sl .
d(-,-), zero is a lower bound. To show that this is the \
greatest such bound, consider soee 0 and suppose that, 10
at iterationm, d(¢™, ¢) = e. Now, letz = min(r, /2), and |
consider the open ballB; = B(cy,z/4), By = B(ca, z/4), | |

where the center points, ¢ are defined, I \

p—¢ (251 - ,
pop (2j-1) 7 .

Ci = @ =+ = — N -5 Sl /
! le—all 4 AR
additionally, lety; € By, ps € By. Then by Lemma 3.1, we -10f o
can confirm thatp and$ are on opposite sides of the plane -
(and hence, that a projection will occur) by verifying that, "o 5 0 s o s 10 15 2
llo2 — @Il < |[p1 — @l 17)
[lo2 — @l > [le1 — @Il (18) Fig. 4. Example estimate trajectory for observer (7-10)d6r= o = 1,

o ) ) with F = R2. The estimate begins &° = (—15,15)7, and approaches
Considering the first of these, we note by the trianglée idealg = (17,0)T.

inequality,
o2 — @l < llp2 — cal| + ||z — @l| < 32 + ||z — @l IV. APPLES ANDORANGES
whereas, by the inverse triangle inequality, To demonstrate the application of these ideas, photos of
S s . nine apples were shown to an audience of thirteen people in
ller =l = Hler —cll 41' ller =2l | a number of pairwise experiments.
> e =@l =52+ |[p2 — c2 Each apple was described by a 15-dimensional feature

so this is indeed the case. Considering the second me;qualYteCtor con;ainrg (1-3) tlhe average4c6oI0L in HSB (huel
(18), we have likewise, saturation, brightness) color space, (4-6) the averager co

in RGB color space, (7) the color variance, (8-10) width,
llor — @l < ller — ]| +ler —@l| < 22+ 2= 1z height, and the ratio of the two, (11-12) stem length, and



TEST 10 may not be the world’s most compelling application in itself
Instead, we view this as a first step towards understanding
and solving the very important question of Programming by
Demonstration in robotics, where a robot is asked to act
“similarly” to a human operator.
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