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Abstract We develop distributed algorithms that mobile agents, by coordinating
with static infrastructure like wireless base stations or air traffic control towers, use
to execute patrol behaviors reflecting topological properties of their environment.
Infrastructure nodes communicate locally with one another using linear dynamics,
to asymptotically synthesize hybrid controllers that are supplied to mobile agents,
and that correspond to navigating loops in the environment.

1 Introduction

When multi-robot systems are deployed in developed areas, static infrastructure –
like wireless routers, cell phone base stations, or air traffic control towers – will
typically be used for communication between the agents. In this paper, we describe
methods by which the existence of infrastructure can also be exploited to create
motion coordination algorithms. The idea, illustrated by Figure 1, is that static in-
frastructure nodes are connected in a communication network and that, by talking
only to their neighbors, these nodes can synthesize local controllers for the mobile
agents that, when combined, satisfy desirable global properties.

In particular, we consider a scenario in which mobile agents are intended to pa-
trol an environment. The controllers synthesized by the static infrastructure will
guide the mobile agents to loop around various obstacles in the environment, while,
simultaneously avoiding concentrations in any one region.

Work on robotic control laws for patrol applications includes [1] and [2], which
ensure that constraints are satisfied on the frequency with which agents visit the
locations to be monitored; [3], [4], and [5], which study the problem from a game-
theoretic perspective and develop stochastic policies to avoid predictability that can
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Fig. 1 Multiple mobile robots (red) execute distributed patrol strategies in a triangulated environ-
ment with the help of wireless base stations (dark gray).

be exploited by adversaries; and [6], which suggests that chaotic systems be used to
generate patrol trajectories.

This paper takes a different, algebraic-topological approach, in which we will
aim to produce interesting patrol strategies using linear protocols, whose charac-
teristics come inherently from the underlying topology of the environment. At the
technical heart of our work lies the Helmholtz-Hodge decomposition, primarily of
chains on simplicial complexes (as in [7] or [8]), but also of a vector field on a
smooth manifold (see e.g. [9]). Analogies between these discrete and continuous
objects is, implicitly, central to discrete exterior calculus (discussed in [10]), which
has found application in a number of areas (e.g. [11], [12], [13], [14]). Our ap-
proach is closest to [13] and [14], in that representatives of the first homology group
are found, but, differs fundamentally in that controllers over the continuous space
are synthesized, which will drive the development of modified Laplacians, whose
null spaces characterize the controllers of interest.

We will proceed by introducing some mathematical preliminaries; then describ-
ing how, by using existing algorithms, one can almost satisfy a particular collection
of necessary requirements; and finally presenting new, unified algorithms that, in
addition to being considerably simpler than the former, satisfy all of the needed
requirements.

2 Background

The environment to be patrolled by the mobile agents will be modeled as a simpli-
cial complex – specifically, as an abstract simplicial complex (which captures the
topology of the static infrastructure), together with a realization for that abstract
simplicial complex (which describes where the infrastructure is in space). The fol-
lowing paragraphs briefly give formal definitions for these and related objects, in
order to introduce notation prior to the problem statement in Section 3. For more
background, the interested reader may wish to refer to [7], [8], and the introductions
to [12] and [14], all of which use similar definitions.
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Given a finite set V (K) of vertices – each of which will, in our case, happen to
represent a static infrastructure node – an oriented simplex ∆ ⊂V (K) is an ordered
subset of V (K) (modulo even permutations, and with a formal sign1); a simplex
with k + 1 vertices has order k. The i-th oriented face of an oriented k-simplex
∆ = [v0, · · · ,vk] is, the k−1-simplex

Fi(∆) = (−1)i[v0, · · · ,vi−1,vi+1, · · · ,vk] = (−1)i
∆/vi

and a simplicial complex K is a finite set of simplices that is closed with respect
to taking faces; i.e., if ∆ ∈ K and σ is a face of ∆ , then σ ∈ K. A simplicial k-
complex K is said to be pure if all simplices whose order is less than k are faces of
higher-order simplices; and consistently oriented if, for every pair of lower-adjacent
k-simplices ∆1,∆2 sharing a face σ , ∆1 and ∆2 induce opposite orientations on σ .
We denote the k-simplices of K by Σk(K). A simplex ∆ ∈ K is a coface of σ ∈ K if
σ is a face of ∆ . Two simplices σ1,σ2 are lower-adjacent (denoted σ1^σ2) if they
share a face, and upper-adjacent (denoted σ1_σ2) if they share a coface.

We will model flows of agents throughout the environment using chains on the
complex, which assign numbers to oriented simplices. Formally, a k-chain c∈Ck(K)
over an oriented simplicial complex K is a formal sum of elements from Σk(K) tak-
ing coefficients from some commutative ring – the reals, R, in our case. For instance,
the formal sum 1.2v0 + 2.6v1 − 0.5v4 is a 0-chain over an appropriate simplicial
complex. Formal sums can be added and multiplied by scalars in the natural way, so
Ck(K) forms a finite-dimensional real vector space. Additionally, we equip Ck(K)
with an inner product, 〈·, ·〉, defined by〈

N

∑
i=0

aiσi,
N

∑
i=0

biσi

〉
=

N

∑
i=0

aibi (1)

where Σk(K) = {σ0, · · · ,σN}, and ai,bi ∈ R ∀i are the chain coefficients.
We will work with a number of linear operators and quadratic forms throughout

this paper, almost all of which are built from boundary operators. The k-th boundary
operator δk(K) : Ck(K)→Ck−1(K) on the oriented simplicial complex K is defined,

δk(K)

(
N

∑
i=0

aiσi

)
=

N

∑
i=0

ai

k

∑
j=0

Fj(σi) ; (2)

by convention, δ0(K) = 0. The null space of δk(K) is called the k-cycles of K and
denoted Zk(K); these represent loops, closed surfaces, and closed hypersurfaces.
The image of δk+1(K) is called the k-boundaries and denoted Bk(K); its elements
are the faces of individual higher-dimensional simplices. The k-th homology group
– which is the vector space that our controllers will represent – is the quotient space
Hk(K) = Zk(K)/Bk(K); in words, it the space one obtains by identifying cycles
that can “continuously deformed” (i.e., obtained by adding and subtracting simplex

1 The formal sign is necessary only to allow 0-simplices to have two orientations.
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boundaries) into one another. Finally, the dimension of Hk(K) is called the k-th Betti
Number of K. E.g., the first Betti number of a simplicial 3-complex is its number
of connected components; the second, the number of “tunnels” through it; and the
third, the number of “voids” contained within in.

It will also be useful to define the boundary subcomplex B(K) of K, which con-
sists of those faces that agents cannot cross; specifically, the boundary subcomplex
B(K) of a pure simplicial n-complex K is the n−1-subcomplex,

B(K) = Cl
{

σ ∈ Σn−1(K)
∣∣∣ σ has fewer than

two cofaces.

}
(3)

where Cl denotes simplicial closure.2

Finally, a realization of a simplicial complex K is an isomorphic complex K′

whose vertex set V (K′) is a finite subset of Rn for some n∈N, and the corresponding
Rips Shadow R(K)⊂ Rn is the union of the convex hulls of K′’s simplices’ vertex
sets.

With mathematical preliminaries addressed, we now turn to the problem at hand.

3 Problem formulation

We consider an environment in which stationary base stations, like wireless access
points or cellular towers, communicate with one another to generate control laws
that they supply to mobile agents, like autonomous robots or aerial vehicles, who
navigate this environment with their assistance.

At the heart of our problem lies a finite, pure, oriented, abstract simplicial n-
complex K, which, together with realization K′, both serves as a model for the en-
vironment, and represents the information topology of the static infrastructure. The
idea is that each vertex v ∈V (K) of the complex represents a base station, and that
the control laws executed by mobile agents in the Rips Shadow R(∆) ⊂ Rn of a
given simplex are determined by values communicated by the static agents repre-
sented by the vertices V (∆) of ∆ .

The instrumented environment described by K is inhabited by N mobile agents
with time-varying positions x1(t), · · · ,xN(t)∈Rn, who perform the patrol tasks with
the help of the infrastructure just described. Although the controllers we will de-
velop for these agents are deterministic, it will be helpful to work in a stochastic
framework, in which agents are distributed throughout the environment according
to a probability measure P defined over R(K); for our purposes, this distribution
can be treated as a smooth, time-varying function m : R(K)× [0,∞)→ [0,1].3

2 I.e., we add whatever simplices are needed to ensure that the complex is closed under taking
faces.
3 This is as opposed to defining P more generally as a tempered distribution, which will not be
necessary.
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The goal is for the static agents Σn(K), in a distributed fashion, to produce a
family of vector fields { fi : R(K)→ Rn}M

i=1 having certain desired properties, by
which the mobile agents can circulate throughout the environment, as required for
robot patrol or aircraft holding-pattern applications.

In particular, we look for any vector field v in this family to satisfy three proper-
ties:

P1.1 The first of these, uniform coverage, insists that if the initial probability den-
sity of the agents is the uniform distribution m(x,0) = 1/Area(R(K)) over
the environment, that this condition persist; i.e., that m(x, t) = 1/AreaR(K)
for all positions x and positive times t.

P1.2 The second, no local cycles, encourages that efficient paths without unneces-
sary loops be traced out by the agents following v, and is expressed by the
requirement that no closed integral curve of f be contractible in R(K) to a
point.

P1.3 The third, zero boundary flux, requires that agents not leave the environment.
Formally, this means that f must have no component orthogonal to the bound-
ary of the complex.

The requirements are illustrated by Figure 2.

Fig. 2 The vector fields produced avoid the concentration of agents within any one control vol-
ume (dashed circle) (left), paths with local loops (center), and collisions with the boundary of the
complex (right).

This problem will be addressed in three parts. First, it is shown how existing
distributed protocols can be used to produce face fluxes satisfying a discrete ver-
sion of most (but not all) of the requirements P1. Next, symplectic vector fields are
generated over the continuous space that are consistent with given flows, also in a
distributed fashion. Finally, a simple, unified algorithm is presented that solves the
continuous and discrete parts of the problem simultaneously, while also satisfying
the remaining requirements of P1.

4 Distributed Computation of Homological Streamfunctions

In the next subsections, we will describe two classes of distributed methods for com-
puting vector fields satisfying P1. The first, which serves to motivate the second,
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employs a method described in [13] to compute face fluxes within K, and then, as
a separate step, adapts another distributed algorithm, described in [15], to compute
vector fields that are consistent with those fluxes, via streamfunctions. The second,
which is one of the contributions of this paper, consists of considerably simplified,
unified algorithms that compute the discrete flows and continuous controllers si-
multaneously, and that also satisfy additional requirements neglected by the first
method.

We will use n− 1-chains on K (i.e., elements of Cn−1(K)) to represent flows of
mobile agents across faces. The idea is that, if a simplex σ ∈ Σn−1(K) appears in
a chain with positive coefficient c ∈ R, then agents are flowing across σ from the
coface of σ with dissimilar orientation, to the coface with similar orientation.

In the subsequent sections, we will be interested in computing face fluxes in
Cn−1(K) that serve as representatives of the homology group Hn−1(K). Later in the
paper, continuous control laws will be produced that achieve these fluxes. In order
to do this, we will first need to introduce a few Laplacian operators, which we do in
the next section.

4.1 Laplacian Operators and Energy Functions

A convenient way to introduce the symmetric Laplacian operators is by means of
particular scalar-valued functions, which we will refer to as energy functions:

Definition 1. For an abstract simplicial complex K, the k-th energy function Ek(K) :
Ck(K)→ R is defined by,

Ek(K)(x) =
1
2 ∑

∆∈Σk+1(K)

〈δk+1(∆),x〉2

+
1
2 ∑

σ∈Σk−1(K)

〈δ ∗k (σ),x〉2 , (4)

with the convention that Σi(K) = /0 for all i < 0, and that summations over the empty
set evaluate to zero.

By way of these energy functions, the (standard) combinatorial Laplacian can then
be defined simply:

Definition 2. For an abstract simplicial complex K, the k-th combinatorial Lapla-
cian Lk(K) : Ck(K)→Ck(K) is the Hessian of the k-th energy function, Ek(K).

It will also be useful to define generalizations of the energy functions that omit cer-
tain terms from the summations of Definition 1, as well as corresponding Laplacian
operators:

Definition 3. Let K be an abstract simplicial complex and L ⊂ K be a subcomplex
of K. Then the k-th restricted energy function Ek(K,L) is defined by,
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Ek(K,L)(x) =
1
2 ∑

∆∈Σk+1(K)/Σk+1(L)
〈δk+1(∆),x〉2

+
1
2 ∑

σ∈Σk−1(K)/Σk−1(L)
〈δ ∗k (σ),x〉2

+
1
2 ∑

σ∈Σk(L)
〈σ ,x〉2 (5)

The restricted Laplacian is then defined in much the same way as before:

Definition 4. For an abstract simplicial complex K, and subcomplex B⊂K, the k-th
restricted combinatorial Laplacian Lk(K,B) : Ck(K)→Ck(K) is the Hessian of the
k-th restricted energy function, Ek(K,B).

Moreover, we will refer to the special case of L(K,B(K)) as the boundary-restricted
Laplacian corresponding to K.

The boundary-restricted Laplacian is particularly useful because it guarantees
zero flow out of the complex, while still characterizing the homology group of the
complex, as described by the next theorem:

Theorem 1. Let x ∈ Ck−1(K) be a (k− 1)-chain on a pure k-complex K. If x is
zero on B(K), then x is in the null space of the boundary-restricted Laplacian
Lk−1(K,B(K)) if and only if it is in the null space of the standard Laplacian
Lk−1(K).

Proof. Since x is zero on B(K), all terms of the third summation of (5) are zero;
consequently, we need only consider the first two summations. If x ∈ nullL (K), it
then follows that x ∈ nullL (K,B(K)), since the terms of the first two summations
in (5) are a subset of those in (4), and each term is positive. To show the converse,
we note that the only terms that appear in (4) but not in the first two summations of
(5) correspond to faces in B(K), and, since x is zero on B(K), these terms are zero.

Finally, we define a directed zeroeth Laplacian operator:

Definition 5. Let G= (V,E) be a directed graph. Then the directed graph Laplacian
L(G) : C0(V )→C0(V ) is defined by,

[L(G)(x)]i = ∑
j|(v j ,vi)∈E

(xi− x j) . (6)

Note that, since G in Definition 5 is directed, it may be that (vi,v j) ∈ E while
(v j,vi) /∈ E, in which case L(G) is not symmetric.

With the necessary Laplacian operators thus defined, we now consider the com-
putation of face fluxes that serve as representatives of the first homology group.
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4.2 Projection onto the first Homology Group

In this subsection, we describe a distributed algorithm for generating elements of
the homology group Hk(K) without global knowledge of the graph topology. These
1-chains will neglect to satisfy P1.3, but serve to motivate subsequent sections.

Recalling that Hk(K) = Zk(K)/Bk(K), what we will do is produce unique repre-
sentatives of elements of Hk(K), that have a component in Zk(K) but not in Bk(K).
We are able to do this because a natural isomorphism exists between Hk(K) and
nullLk(K). Since nullLk(K) = Zk(K)∩Bk(K)⊥, an element v ∈ nullLk(K) is the
unique representative of an equivalence class in Hk(K) = Zk(K)/Bk(K) whose com-
ponent in Bk(K) is zero.

Since the restricted energy function E1(K,B(K)) is convex, gradient descent from
any point converges asymptotically to nullLk(K,B(K)). Indeed, since E1(K,B(K))
has a quadratic but not a linear term, those gradient dynamics are simply,

ẋ =−Lk(K,B(K))x (7)

which, so long as k is not too large, constitute a distributed method for asymptot-
ically computing the projection of a given k-chain x(0) onto nullLk = Hk(K). To
elaborate, the sparsity pattern of Lk implies that this process requires (k+ 1)-hop
communication in each round.

In [13], this property of the dynamics (7) was used to project a random 1-
chain onto the homology group H1(K) in order to determine, with unit probability,
whether it is trivial (i.e., has dimension zero). In this way, a sensor network could
determine whether it contained any holes.

For our purposes, what matters is that this is an algorithm for producing unique
representatives of elements of H1(K). With such a method thus in hand, we now
turn our attention to the generation of continuous control laws from these edge
flows. When the environment is two-dimensional (i.e., n = 2, and K is a pure 2-
complex), these can be produced via streamfunctions, which we describe in the next
subsection.

4.3 Hybrid Streamfunctions

A streamfunction φ : R(K)→ R is a scalar-valued function defined throughout the
environment R(K) ⊂ R2, whose purpose is to induce the Hamiltonian vector field
f : R(K)→ R2, defined by

f (x) = J gradφ(x) , (8)

where the skew-symmetric matrix J ,
[

0 1
−1 0

]
has the interpretation both of being

a 90-degree rotation matrix, and of being the matrix representation of the symplec-
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tic form (a,b) 7→ det([a,b]). Note that the (images of the) integral curves of f are
exactly the level sets of φ .

We will compute streamfunctions over R(K) that induce vector fields that agree
with the flows computed in the previous section in the following sense:

Definition 6. Given an oriented simplicial k-complex K with realization r : V (K)→
Rn, a vector field f : R(K)→ Rn agrees with a (k−1)-chain ν if, for each simplex
∆ ∈ Σk−1(K), the flux of f across R(∆) equals 〈ν ,∆〉.

It is sufficient to consider piecewise linear streamfunctions that are defined by
barycentric interpolation of 0-chains across simplices. This is done in the following
way: Letting K̄′ be the canonical realization of K, a unique affine map β : R(K)→
R(K̄) exists, under the assumption that the interiors of the Rips Shadows of all the
simplices are disjoint, that takes a point x ∈R(K)⊂R2 to canonical coordinates in
R|V (K)|.4 With this defined, the streamfunction φc : R(K)→ R corresponding to a
0-chain c = c1v1 + · · ·+ cNvN is defined simply by,

φc(x) =
N

∑
i=0

ciβi(x) . (9)

Since the only nonzero terms of this sum correspond to the vertices of the simplex
containing the given point x, this function can be computed at any time using only
local information.

Our first link between the continuous and the discrete is then provided by the
following simple lemma, which we arrive at by combining (9), (8), and Definition
6:

Lemma 1. Let K be a finite pure abstract simplicial 2-complex with realization K′,
φc : R(K)→ R as defined by (9), f : R(K)→ R2 as defined by (8), and v = δ ∗1 (c).
Then f agrees with v (in the sense of Definition 6).

In short, it is precisely the coboundary operator δ ∗1 : C0(K) → C1(K) that maps
from the 0-chains that represent streamfunctions to the corresponding 1-chains that
represent face fluxes.

In [15], it was shown as a corollary that, within a 2-simplex ∆ = (v1,v2,v3) ∈
Σ2(K), the 0-chain corresponding to a discrete incompressible flow v ∈C1(K) can
be computed as,

c = [δ ∗1 (∆)]†v+1s (10)

where 1 ∈ C0(∆) is the 0-chain that assigns a 1 to each vertex and s is a separate
2-chain computed by another Laplacian-based distributed algorithm (described in
[15]). In this manner, a continuous streamfunction is produced that agrees with a
given divergence-free 1-chain on G.

4 For each point x ∈R(K), this is a sparse vector, whose only nonzero elements correspond to the
vertices of the simplex containing x; these take the values of the barycentric coordinates of x in that
simplex.
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Now that we have both (1) a method for computing 1-chains in H1(K) and (2)
a method for computing streamfunctions that agree with them, in principle the two
algorithms can simply be composed to produce homological streamfunctions sat-
isfying P1.1 and P1.2. However, it is possible to perform a similar computation in
a more unified manner, while additionally satisfying P1.3, as described in the next
section.

5 Unified algorithms

The key idea of this section is that the two algorithms just described can be unified
by considering as a whole the properties that the 0-chain defining the streamfunc-
tion must satisfy; in the process, we will enforce the additional constraints imposed
by P1.3. We will first consider a undirected, 2-hop algorithm that follows directly
from our definitions, before introducing a directed, 1-hop algorithm that, remark-
ably, converges to the same set.

5.1 An undirected, 2-hop algorithm

The most straightforward approach, which results in an at-most-2–hop algorithm,
results from composing the boundary and energy operators, as follows:

Theorem 2. The dynamics,

ċ(t) = δ1(K)L1(K,B(K))δ ∗1 (K)c(t) ∀t > 0 (11)

converge asymptotically from any initial condition c(0) ∈C0(K) to a value c(∞) ∈
C0(K) such that, if x = δ ∗1 (K)c, then x ∈ nullL (K,B(K)).

Proof: The restricted energy function E (K,B(K)) can be written,

E (K,B(K))(x) =
1
2

x∗L1(K,B(K))x ; (12)

consequently

E (K,B(K))(δ ∗1 (K)c) =
1
2

c∗(t)δ1(K)L1(K,B(K))δ ∗1 (K)c(t) (13)

whose gradient-descent dynamics with respect to c are (11).

What this means is that, by running the simple, linear, 2-hop protocol (11), we
can asymptotically compute a 0-chain, that induces a streamfunction, that induces a
vector field satisfying P1. However, in the next section, we will see that this is also
achievable with a directed, 1-hop algorithm.
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5.2 A directed, 1-hop algorithm

Ultimately, we will produce a 0-chain satisfying the desired properties (i.e., that
induces a vector field satisfying P1) by running Laplacian dynamics on a directed
graph built from the complex K, which allows information to flow bidirectionally
within the interior of the complex, as well as bidirectionally within the boundary,
but only in a single direction between the two. This directed graph, which we will
refer to as the insulated 1-skeleton, G(K), only allows a 1-way flow of information
from the boundary to the interior of the complex.

Definition 7. The insulated 1-skeleton G(K)= (V,E) of a pure simplicial n-complex
K is the graph with vertex set V = Σ0(K), in which

P2.1 For all a,b ∈ Σ0(K/B(K)), we have (a,b),(b,a) ∈ E if and only if (a,b) ∈
Σ1(K) or (b,a) ∈ Σ1(K) .

P2.2 For all a,b ∈ Σ0(B(K)), we have (a,b),(b,a) ∈ E if and only if (a,b) ∈
Σ1(B(K)) or (b,a) ∈ Σ1(B(K))

P2.3 For all a ∈ Σ0(B(K)),b ∈ Σ0(K/B(K)), we have (a,b) ∈ E if and only if
(a,b) ∈ Σ1(K) or (b,a) ∈ Σ1(K).

P2.4 For all a ∈ Σ0(K/B(K)),b ∈ Σ0(B(K)), we have (a,b) /∈ E.

Definition 7 is illustrated by Figure 5.2. In essence, one undirected graph links the
vertices in the interior of the complex; another links those in its boundary; and edges
between the two are directed from the boundary to the interior.

The insulated 1-skeleton G(K) produced through definition 7 is illustrated by
Figure 5.2. The next theorem explains how consensus dynamics on G(K) can then
be used to compute representatives of the homology group and streamfunctions to-
gether in a unified way.

Fig. 3 A pure simplicial 2-complex K (left), its boundary subcomplex B(K) (center), and the cor-
responding insulated 1-skeleton G(K) (right)

Theorem 3. Let K be a pure simplicial n-complex, G(K) its insulated 1-skeleton,
and L the directed Laplacian corresponding to G(K). For any 0-chain c0 ∈C0(G(K)),
the directed Laplacian dynamics,

ċ(t) =−Lc(t) ∀t > 0 (14)
c(0) = c0
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converge asymptotically to a 0-chain c∞ such that δ ∗1 (c∞) ∈ nullL1(K,B(K)).

Proof : We must demonstrate that the system is stable, and that the linear subspace
{c | δ ∗1 c ∈ nullL1(K,B(K))} is its equilibrium set. First, we address stability. With-
out loss of generality, the dynamics (14) can be block-decomposed as,[

ẋ
ḃ

]
=

[
−(Lx +Dxb) C

0 −Lb

][
x
b

]
(15)

where Lx is the (undirected) Laplacian for the undirected graph G(K)/B(K), Dxb is
a diagonal, positive-semidefinite matrix (representing the extra degree due to edges
connecting vertices in G(K)/B(K) to B(K)), Lb is the (undirected) Laplacian for B,
and Cxb is a coupling matrix representing edges from G(K)/B(K) to B(K).

To demonstrate stability, we must show that none of the Jordan blocks for the
system’s zero eigenvalues are larger than 1x1, and that all eigenvalues are nonpos-
itive. First, note that, although the lower diagonal block, −Lb, does have a nontriv-
ial nullspace, it, by the Spectral Theorem, is diagonalizable, so none of its Jordan
Blocks are larger than 1x1. Next, consider the upper diagonal block −(Lx +Dxb):
Since there is at least one edge from B to each connected component of G(K)/B(K),
no zero-chain in the null space of Lx (i.e., that is constant on each connected com-
ponent of G(K)/B(K)) can also be in the null space of Dxb, and consequently
−(Lx +Dxb) is negative definite. Since the upper diagonal block has strictly neg-
ative eigenvalues, and, although the lower block does have zero eigenvalues, they
correspond to Jordan blocks of size 1x1, the system is stable.

Next, we demonstrate that the equilibrium set is precisely the subspace {c | δ ∗1 c∈
nullL1(K,B(K))}, by considering in turn each of the requirements that a vector in
nullL1(K,B(K)) must satisfy, with reference to (5):

• No circulation: The first sum of (5) is zero if and only if, for each simplex ∆ ∈
Σ2(K)/Σ2(B(K)), we have 〈δ2(∆),δ ∗1 (c∞)〉 = 0, or equivalently (by definition
of an adjoint operator), if 〈δ1δ2(∆),c∞〉= 0. Since δkδk+1 ≡ 0 for all k ∈N, this
is automatically true.

• No divergence in interior: The second sum of (5) is zero if and only if, for
each σ ∈ Σ0(K)/Σ2(B(K)), we have 〈δ ∗1 (σ),δ ∗1 (c∞)〉 = 0, or, equivalently, if
〈σ ,δ1δ ∗1 c∞〉= 〈σ ,L0(c∞)〉= 0. This is precisely the condition, specified by the
upper diagonal block of the system matrix, for vertices in σ ∈ Σ0(K)/Σ2(B(K))
to be at equilibrium.

• Boundary condition: The third sum of (5) is zero if and only if, for each σ ∈
Σ1(B(K)), we have 〈σ ,δ ∗1 (c∞)〉= 0, or, equivalently, iff c∞ is constant on each
connected component of B(K). The lower diagonal block of the system matrix
is the standard zeroeth combinatorial Laplacian for B(K), and its null space is
exactly such zero-chains.

With stability guaranteed and the equilibrium set characterized, we conclude the
proof.
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6 From the discrete to the continuous

We next show that the 0-chains produced by, e.g., (14), in fact do induce vector
fields that satisfy the properties P1 for which we have aimed. This will be stated by
Theorem 4, which will follow the next, prerequisite lemma:

Lemma 2. Let K be a finite pure abstract simplicial 2-complex with realization K′,
let c ∈ nullL1(K,B(K)), φc : R(K)→ R according to (9), and x ∈ intR(K). Then
φ(x)≥minφ .

Proof : A point x ∈R(K) lies in exactly one simplex of the realization K′ of K, of
some order m≤ 2, and with vertices v1, · · · ,vm. First, consider when m > 0. Letting
j = argmaxk=1,··· ,m{φ(vk)}, we define γ : [0,1]→ R(K) by γ(t) = (1− t)x+ tv j.
Then, since φ(x) is a convex combination of φ(v1), · · · ,φ(vm) (by (9)), we note that
φ ◦ γ is a decreasing function, so x is not a strict local minimum. Next, consider
the case when m = 0, and let u1, · · · ,up be those vertices edge-adjacent to v1 =
x. We then define j = argmaxk=1,··· ,m{φ(vk)} and γ(t) = (1− t)x+ tu j. Since c ∈
nullL1(K,B(K)) and v1 /∈ B(K), we have 〈c,v1〉 = 1

p (〈c,u1〉+ · · ·+
〈
c,up

〉
) ≥ u j,

so φ ◦ γ is again decreasing and x is again not a strict local minimum.

Lemma 2 can be seen as an analogue to the Maximum Principle for harmonic
functions, which states that those functions take their extreme values on the bound-
ary of their domain. Lemma 2 states the same property for the piecewise-linear func-
tions that constitute our streamfunctions. This property will be useful in the proof of
the next theorem, which shows that the vector fields that we generate indeed satisfy
our desired requirements P1.

Theorem 4. Let K be a finite pure abstract simplicial 2-complex with realization
K′, c ∈ nullL1(K,B(K)), v = δ ∗1 (c), and define φ : R(K)→R and f : R(K)→R2

by (9) and (8) respectively. Then f satisfies P1.

Proof : We will address each property in turn:

1. Since the vector field f is Hamiltonian, it satisfies P1.1 by Liouville’s theorem.
2. Suppose γ[0,1]→ intR(K) is a closed integral curve of (8) that is contractible

to a point p∈ intR(K). Since γ is closed, by the Jordan curve theorem it divides
R2/γ([0,1]) and consequently R(K)/γ([0,1]) into two disjoint sets, A and B.
Let A be the set that contains p. Since γ is an integral curve of (8), (φ ◦γ)(t)≡ k
for some k ∈ R, and, since gradφ(γ(t)) 6≡0, there exists a point q ∈ A such that
φ(q) 6= k (e.g., arbitrarily close to γ([0,1])); without loss of generality, assume
φ(q)> k. Since A∪γ([0,1]) is compact, it contains a maximizer s∈ A∪γ([0,1])
to φ , and, since φ(s) ≥ φ(q) > k, s /∈ γ([0,1]); i.e., γ encloses a strict local
maximum to φ . However, by Lemma 2, such a point cannot exist in intR(K),
so we have a contradiction, and P1.2 is satisfied.

3. Since c ∈ nullL1(K,B(K)), then for any vertices v1,v2 in the same connected
component of S(v1,v2) ⊂ B(K), 〈c,v1〉 = 〈c,v2〉. Consequently, φc is constant
on R(S(v1,v2)); by the chain rule, gradφc ⊥ S(v1,v2); and by (8), f ‖ S(v1,v2);
i.e., f satisfies P1.3.
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With it now demonstrated that the vector fields generated satisfy P1, we describe
simple algorithms that take advantage of this fact to produce linearly-independent
families of vector fields satisfying those properties.

6.1 Infrastructure-Assisted Behavior Generation

In an environment with h holes,5 the distributed homological-streamfunction gen-
eration algorithm of the previous section can be employed in a straightforward way
to generate, with probability 1, an h-dimensional vector space of patrol behaviors.
With the “heavy lifting” done by the distributed projection algorithm, the remainder
of the behavior generation algorithm is exceedingly simple: So long as q ≥ h, the

Input: Oriented simplicial complex K; q ∈ N
Output: c∞,1, · · · ,c∞,q
Algorithm:

• For i = 1 to q

– Generate random 0-chain c0 ∈ C0(K), according to any probability
distribution p on C0(K), the span of whose support is C0(K).

– Run dynamics (14) or (11) from initial condition c0 until conver-
gence; store result as c∞,i.

Fig. 4 Distributed algorithm for computing homological patrol strategies.

resulting family of vector fields induced by the zero-chains c∞,1), · · · ,c∞,q will span
the space of vector fields satisfying P1.

A possible objection can be raised, which is that, if q is chosen according to a
conservative upper bound on h, then the set of behaviors obtained will not be linearly
independent; i.e., vector fields will be generated that are redundant in the sense that
they lie in the span of the others. In general, two ways to deal with this situation
exist:

The first is to perform distributed orthonormalization. This is the approach taken
in e.g. [16], [17], [18], [19], which perform distributed Arnoldi-like iterations to
compute Laplacian spectra. The unavoidable disadvantage of approaches of this
type is that the computation of inner products inherently requires sums across all
of the agents; hence each outer iteration of these algorithms involves an entire con-
sensus problem to compute inner products, and the algorithms are consequently (and
necessarily) quite slow.

The second is to accept redundancy. So long as our objective is to generate be-
haviors satisfying the properties P1, there is no particular reason to believe that a
minimal set of such behaviors is required. Indeed, it is precisely by relaxing the
orthonormality requirement found in spectral algorithms that the algorithms we
present obtain their speed.

5 i.e., in a 2-complex whose first Betti number is h
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7 Implementation

An experimental framework was developed in which the distributed algorithm (14)
can be used to project either random flows as in Figure 6.1, or human-generated in-
puts – obtained from motion-capture – onto constraint subspaces like that specified
by P1. Figure 7 illustrates the environment.

Fig. 5 Khepera III mobile robots in a simplicial complex (left) (internal edges are shown in purple
and boundary edges in blue), and robots moving in the same complex according to a streamfunc-
tion, overlaid (right).

Input Flow Incompressible Flow Harmonic Flow

Fig. 6 Depicted are a specified flow (left), and its projections onto the incompressible (center)
and harmonic (right) subspaces. The harmonic flow described in this paper (right) differs from the
incompressible flow described in [15] (center), in that the former avoids the local vortices visible
in the latter. In both cases, it is a collection of hybrid, piecewise-linear controllers that realize the
flows. These controllers are produced as the Hamiltonian vector field corresponding to a piecewise-
linear streamfunction (color gradients).

8 Conclusion

We have developed a collection of distributed, consensus-like algorithms by which
static infrastructure nodes can synthesize controllers for mobile agents that cause
them to circulate throughout an environment without either concentrating their mass
in any location, or following paths with contractible loops. This is done first by com-
bining existing algorithms for computing flows and synthesizing controllers that
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agree with the flows; then by, in a unified fashion, computing controllers and flows
together in a symmetric, 2-hop algorithm; and finally by an equivalent 1-hop algo-
rithm that, remarkably, arises from a directed Laplacian. The result is a family of
linear protocols that converge exponentially to hybrid controllers representing the
topology of the environment.
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