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Abstract: Since the properties of systems comprising many homogeneous agents may be
expected to be independent of how the agents happen to be indexed, it should be possible to
formulate and solve multiagent control problems in an index-free way. In this paper we provide
such an approach, based on an indicator distribution representation, which results in integro-
differential dynamics that parallel and extend those obtained within the traditional indexed
formulations. Conservation and stability properties are proven; a compatible geometric structure
is constructed for the indexed representation; and a discrete analogue is presented which
illustrates that for certain problems the Eulerian viewpoint results in very simple controllers.

1. INTRODUCTION

In much of the work to date in the multiagent controls
literature it is assumed that there is an indexed collection
of agents with states x1, · · · , xN ∈ Rn. Then, these
individual states are collected in a single vector x ∈ RnN ,
and analysis proceeds from this point. Examples include
Olfati-Saber and Murray (2004), Xiao and Boyd (2003),
Egerstedt and Hu (2001), and Tan and Lewis (1996).

For systems in which there are many homogeneous agents,
it may be argued that this is an unnatural approach
because it requires that agents be indexed, whereas the
fundamental properties of such systems should be indepen-
dent of agent labeling. One way of dealing with this is to
introduce an equivalence relation between states, defined

x ∼ y ⇐⇒ ∃P ∈ π(N) s.t. x = (P ⊗ I)y (1)

for any x, y ∈ R
nN , where π(N) denotes the group of

N×N permutation matrices and ⊗ denotes the Kronecker
product. Essentially, one is then looking for properties of
the system that are invariant under permutation of the
agent indices or for methods by which the agents can agree
on a permutation; this is the approach taken in e.g. Twu
and Egerstedt (2010) and Zavlanos and Pappas (2007).

In this paper, we propose an alternative formulation which
avoids the need for an equivalence relation, or for computa-
tions in the (very large) space of permutations (for instance
in Twu and Egerstedt (2010) it is shown that certain
problems are NP-hard in the indexed setting). The key
observation is that the quotient space RN/ ∼ is nothing
more than the set of finite subsets of R

n of cardinality
N . In other words, the joint state space of the multiagent
system is really a subset of 2R

n

, and we can represent the
state by an indicator function (or more appropriately, an
indicator distribution) over Rn. Dynamics then become
partial differential equations (in particular, the advection
equation) which evolve the indicator distribution. Using
the language of partial differential equations (and in par-
ticular those describing fluids), this can be thought of as
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an Eulerian view of the problem, whereas the traditional
view in the multiagent systems literature is Lagrangian.

Similarly-motivated work includes Kloder and Hutchinson
(2005) and Kloder et al. (2004), in which the individual
configurations in R2 ∼= C of robots in a formation are
represented by the roots of a complex polynomial whose
coefficients constitute the permutation-invariant joint con-
figuration. Particularly attractive properties of this repre-
sentation include that it is finite-dimensional and can be
interpolated in a very straightforward way. A limitation
not shared by our work is that it is only applicable to
states/configurations in two dimensions, and since the
representation hinges on the Fundamental Theorem of
Algebra it is not clear how one would generalize to higher
(or lower) dimensions.

Other work which is technically similar to ours also ex-
ists, mostly in the mathematical biology community un-
der the heading of nonlocal integro-differential models
of swarms; this includes Mogilner and Edelstein-Keshet
(1999), Topaz et al. (2006), Laurent (2007), Bodnar and
Velazquez (2005), and Burger et al. (2007). The models
studied in this area typically also include diffusion and
sometimes nonlinear reaction terms, but share the prop-
erty of determining advection velocities by a convolution
integral; hence many of the results given in e.g. Topaz
et al. (2006) can be specialized to the case which we
study. Nevertheless, there are a number of essential nov-
elties to our approach which arise precisely because of
the interplay between the indicator distribution and the
indexed representation (the latter of which is not present
in a purely continuum model). Among these are a natu-
ral permutation-invariant geometric structure which the
indexed representation inherits via the kernel trick, and
an Eulerian control philosophy which in certain situations
can result in dramatically simple controllers.

The body of this paper proceeds as follows: After introduc-
ing the indicator distribution and its dynamics (section 2),
we relate this representation to the more standard graph-
theoretic one (section 3); then we prove conservation prop-
erties including stability (section 3.1). Following this we



construct an inner product space on indicator distributions
which enables us to reason geometrically about them (and
kernelize the Lagrangian representation) (section 4), and
finally use a discrete analogue to this representation to
give an example both of the dual relationship between the
Eulerian and Lagrangian approaches, and of the utility
for certain problems of selecting the Eulerian approach
(section 5). In the interest of clean expressions, we freely
drop arguments to functions throughout this document
wherever this should not cause undue confusion.

2. THE INDICATOR DISTRIBUTION

Beginning from the classical notion of an indexed set
of agents, we will build an indicator distribution, or
permutation-invariant state, that retains all necessary in-
formation while stripping out agent identities. The es-
sential idea will be to construct an object that tells us
not what state each agent is in, but rather how many
agents are in each state. The construction is as follows:
Starting from an indexed collection of agents with states
x1, · · · , xN ∈ Rn, we build an indicator distribution m
over Rn defined,

m(x) = Φ(x1, · · · , xN )(x) =

N
∑

i=1

δ(x− xi) (2)

where δ is the Dirac delta distribution on Rn, T (Rn)
denotes the space of tempered distributions on Rn, and the
map Φ : RnN → T (Rn) creates m from x1, · · · , xN . We
use m to denote this distribution because we would like to
think of it as the agent “mass distribution.” Importantly,
notice that although indices were used in the construction
of m, it is fundamentally an object that is concerned only
with the number of agents in any given state.

One may also think of m as the probability distribution
(after normalizing by 1

N ) that answers the question, “If
an agent is chosen uniformly at random, what is the
probability that that agent is at the state x?”

More generally, we would like to be able to add and
subtract distributions so that we have a full vector space
structure. Hence we will also consider linear combinations
of distributions of the form (2); these take the form

x 7→

K
∑

i=1

ciδ(x− ξi) (3)

for some c1, · · · , cK ∈ R, K ∈ N, and ξ1, · · · , ξK ∈ R
n.

Now suppose that, in the classical setting, each agent
i ∈ {1, · · · , N} has state xi ∈ Rn and dynamics

ẋi = vi (4)

where vi is our control input, and that moreover vi
is output by some controller, identical for all agents,
that depends only on m(·, t) and not the indexed set
of states. In other words (and making time dependence
explicit), vi(t) = v(xi(t),m(·, t)) ∀i ∈ {1, · · ·N}. Then,
the equivalent dynamics for our indicator distribution are
given by the advection equation

ṁ = − div(mv)

= −∇ · (mv)

= −(∇m) · v −m(∇ · v) . (5)

3. WEIGHTED LINEAR CONSENSUS

In the indexed setting, a particular problem which has
received a great deal of attention is that of distributed
averaging. This is described by the consensus equation

ẋ(t) = −Lw(G(t))x(t) (6)

where Lw(G(t)) is the (possibly weighted) graph Laplacian
for some undirected interaction graph G(t) on N vertices,
and can be written as the product

Lw(G(t)) = D(t)W (t)DT (t) (7)

where D(t) is the incidence matrix for any orienta-
tion of G(t) and W (t) is a diagonal matrix of positive
edge weights. See Mesbahi and Egerstedt (2010) for an
overview.

We say that the protocol (6) is permutation invariant if
both the presence of an edge between two agents, and
the weight assigned to an edge, are functions only of
the permutation-invariant state (or indicator distribution)
m = Φ(x). In other words, the interaction graph is allowed
to depend on the states of the many agents, but not on
their identities.

This occurs in a great many cases of interest, including disk
graphs, Gabriel and Delaunay graphs, nearest-neighbor
graphs, and even situations in which edges are functions of
many agents’ states (e.g., if a line-of-sight communication
link between two agents can be severed by a third agent
who gets in the way). Consensus on static (i.e., constant)
interaction graphs, however, is generally not permutation-
invariant, since in this case edges are determined not
by agents’ states but by their identities (i.e., if agent i
is to communicate with agent j and not with agent k
regardless of the many agents’ states, then it requires some
way to differentiate between agents j and k). In graph-
theoretic terms, what is required for a static interaction
graph is that every permutation of the vertex labels be a
graph automorphism – a property possessed only by the
empty graph and the complete graph. Hence, permutation-
invariance will usually involve dynamic, state-dependent
graphs.

So long as (6) is permutation-invariant, it is possible to
express equivalent dynamics in our index-free framework.
In short, the state-dependent vector field v in (5) then
takes the form,

v =

∫

ζ∈Rn

m(ζ)w(ζ, x,m)(ζ − x)dζ (8)

where w : Rn × Rn × T (Rn) → [0,∞) is a positive state-
dependent weighting function satisfying the symmetry
property w(ζ, x,m) = w(x, ζ,m) for all x, ζ ∈ Rn and
m ∈ T (Rn). In most cases that arise, w depends only on
its first two arguments, since the intensity with which a
pair of agents interacts is usually a function only of their
two states and not on other agents’. For instance, the unit-
disk topology 1 can be encoded by the weighting function

w(ζ, x) = ind(||ζ − x|| < 1) (9)

where ind([expression]) denotes the indicator function for
the set where [expression] evaluates to ‘true.’

1 I.e., two agents can interact if and only if they are within one unit

distance of one another.



A yet-more-specific form for w which will be of particular
interest is

w(ζ, x) = f ′

(

1

2
||ζ − x||2

)

(10)

where f ′ is the derivative of some nondecreasing scalar
function f : R → R.

Regardless of the particular form of w, the controller (8)
then induces the closed-loop dynamics on the indicator
distribution m,

ṁ(x) = − div

(

m(x)

∫

ζ∈Rn

m(ζ)w(ζ, x,m)(ζ − x)dζ

)

.

(11)

3.1 Properties of Index-Free Linear Consensus

In this section we prove center-of-mass conservation and
stability properties of the closed-loop system (11). Note
that the following theorems hold not only when m is a
sum of Dirac deltas as in (2), but also for any positive m
which either has compact support or which more generally
vanishes at infinity; naturally, this includes smooth density
functions.

We note here that similar results to Theorems 1 and 2 are
also proven for a closely-related PDE featuring diffusive
terms in Topaz et al. (2006). We nevertheless include
Theorems 1 and 2 both in the interest of completeness,
and for their value as instructive specializations to our
case.

Theorem 1. (Center of Mass Conservation). Under the as-
sumption that m vanishes at infinity, the center of mass
x̄(t) ∈ Rn defined by

x̄i ,
〈

m,xi
〉

L2(Rn,R)
(12)

(where xi is the ith canonical coordinate function) is
constant in time. 2

Proof : Differentiating the i-th component of x̄ (and
dropping the subscript L2(R

n,R) to the inner product),

∂

∂t

〈

m,xi
〉

=
〈

ṁ, xi
〉

=
〈

− div(mv), xi
〉

= −

n
∑

j=1

〈

∂

∂xj
(mv)j , xi

〉

.

Since m vanishes at infinity, integration by parts gives that
this equals

〈

(mv)1,
∂

∂x1
xi

〉

+ · · ·+

〈

(mv)n,
∂

∂xn
xi

〉

=
〈

(mv)1, δ1i
〉

+ · · ·+
〈

(mv)n, δni
〉

where δij denotes the Kronecker delta. As a result,

∂

∂t

〈

m,xi
〉

=
〈

mvi,1
〉

where 1 denotes the constant function that returns 1 ∈ R;
this inner product is interpreted as the total mass flux.
Expanding this expression, we have

2 Here, 〈·, ·〉L2(Rn,R) denotes the standard L2 inner product over

functions from Rn to R.

〈

mvi,1
〉

=

∫

x∈Rn

m(x)

∫

ζ∈Rn

m(ζ)w(ζ, x,m)

· (ζ − x)dζdx

=

∫

(x,ζ)∈R2n

m(x)m(ζ)w(ζ, x,m)

· (ζ − x)d(x, ζ) .

We note that the term being integrated is antisymmetric
in x and ζ, and hence that the integral is zero.

.

Theorem 2. (Stability). Let w : R
n × R

n → R take the
form (10). Then the closed-loop dynamics (11)

• are stable if f ′(x) ≥ 0 ∀x ∈ [0,∞), and
• are globally asymptotically stable with equilibrium
point x̄ defined by (12), if f ′(x) > 0 ∀x ∈ [0,∞)

so long asm vanishes at infinity. Moreover, in the first case,
if f ′(x) > 0 ∀x ∈ [0, R), then for all i, j ∈ {1, · · · , N}, at
equilibrium either ||xi − xj || = 0 or ||xi − xj || > R.

Proof : Consider the Lyapunov functional,

V (m) =

∫

y∈Rn

∫

x∈Rn

m(x)m(y)f

(

1

2
||x− y||2

)

dxdy .

(13)
Differentiating,

V̇ =

∫

y∈Rn

∫

x∈Rn

[ṁ(x)m(y) +m(x)ṁ(y)]

· f

(

1

2
||x− y||2

)

dxdy

which by symmetry

= 2

∫

y∈Rn

∫

x∈Rn

ṁ(x)m(y)f

(

1

2
||x− y||2

)

dxdy

and substituting in (5)

= −2

∫

y∈Rn

∫

x∈Rn

div
x
(m(x)v(x))m(y)

· f

(

1

2
||x− y||2

)

dxdy

= −2
n
∑

i=1

∫

y∈Rn

∫

x∈Rn

∂

∂xi
(m(x)vi(x))m(y)

· f

(

1

2
||x− y||2

)

dxdy .

Integrating by parts (and sincem vanishes at infinity), this
is,

−2

n
∑

i=1

∫

y∈Rn

∫

x∈Rn

(m(x)vi(x))

·
∂

∂xi

(

m(y)f

(

1

2
||x− y||2

))

dxdy

which, since f ′(12 ||x− y||2) = w(x, y), simplifies to

2

n
∑

i=1

∫

y∈Rn

∫

x∈Rn

m(x)vi(x)m(y)w(x, y)(xi − yi)dxdy .

Substituting in (8) we arrive at the separable integral



2

n
∑

i=1

∫

x∈Rn

m(x)

(
∫

y∈Rn

m(y)w(x, y)(xi − yi)dy

)

·

(
∫

ζinRn

m(ζ)w(x, ζ)(ζi − xi)dζ

)

dx

= −2

n
∑

i=1

∫

x∈Rn

m(x)||v(x)||2dx

which is never positive so long as f ′ ≥ 0 (thus proving
the first statement of the theorem), and always strictly
negative provided f ′ > 0 (which, together with the pre-
vious theorem, proves the second statement). The third
statement likewise follows immediately from LaSalle’s in-
variance principle.

4. AN INNER PRODUCT SPACE VIA SMOOTHING

In this section we imbue the state space of indicator
distributions with an inner product structure; this will
enable us to reason geometrically about multiagent control
laws in an index-free way. Essentially, we will smooth
indicator distributions by convolving them with an ap-
propriate function (in particular, a Gaussian) to arrive at
smooth functions for which the standard L2 inner product
is defined; this is illustrated by figure 1. The reason for
choosing Gaussians in particular is that the corresponding
convolution operator is invertible. In geometric language,
the inner product is constructed as the pullback of the
standard L2 inner product under a linear isomorphism.

The smoothing operator is introduced in section 4.1, which
is used to define the inner product in section 4.2. Finally,
in section 4.3, we use this inner product together with the
embedding Φ introduced in (2) to compute these inner
products directly from the indexed representation.

4.1 Smoothed Indicator Distributions

Let w : Rn → R be a Gaussian of the form,

w(x) = exp(−xTQx) (14)

for some Q = QT � 0 ∈ Rn×n. Then we define the
smoothing operator Aw : T (Rn) → L2(R

n,R) by,

Aw(m) = w ∗m (15)

where ∗ is the standard convolution operator.

Lemma 1. Aw is a linear isomorphism.

Proof : Aw is clearly linear. To show that it is also
invertible, we note that m̃ = Aw(m) can be computed
as the solution to Laplace’s equation in the following way:
The PDE

φ̇(x, t) = ∆φ(x, t) (16)

with the initial conditions φ(z, 0) = m(Q−1/2z) (where
(Q1/2)TQ1/2 = Q; Q1/2 exists since Q � 0, and can be
computed by e.g. the Cholesky decomposition) has the
solution

φ(z, t) =

N
∑

i=1

1

(4πt)n/2
e−

(z−Q1/2xi)
T (z−Q1/2xi)

4t (17)

for t > 0, and hence m̃(x) = πn/2φ(Q1/2x, 1
4 ). In the

same way, starting with m̃ and imposing the condition
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Fig. 1. The indicator distribution (top) is smoothed by
convolution with a Gaussian to arrive at a function in
L2 (bottom).

φ(z, 1
4 ) = 1

πn/2 m̃(Q−1/2z), m can be reconstructed as

m(x) = φ(Q1/2x, 0).

Note that although the backwards heat equation used
in lemma 1 is extremely ill-conditioned, in principle the
solution exists; see e.g. Evans (1998).

Lemma 2. For any indicator distribution m, A(m) is
square integrable.

Proof : A(m) can be written as a sum of translated copies
of w; since w is square-integrable, this sum is square-
integrable.

4.2 An Inner Product

Given two indicator distributions m1,m2, we define their
inner product

〈m1,m2〉A = 〈A(m1), A(m2)〉L2(Rn,R) .



Lemma 3. 〈·, ·〉A is an inner product.

Proof : Since A(m1) and A(m2) are square integrable by
Lemma 2, their L2 inner product exists. Since 〈·, ·〉L2(Rn,R)

is symmetric, so is 〈·, ·〉A; since A is linear and 〈·, ·〉L2(Rn,R)

is bilinear, 〈·, ·〉A is bilinear; and since 〈·, ·〉L2(Rn,R) is

positive definite and A is an isomorphism, 〈·, ·〉A is positive
definite. Hence 〈·, ·〉A is an inner product.

4.3 Kernelizing the Inner Product

How does the inner product of the previous section relate
to the classical indexed representation of a multiagent
system?

The kernel κΦ attached to the embedding Φ is the map

κ((x1
1, · · · , x

1
N ), (x2

1, · · · , x
2
N )) ,

〈

Φ(x1
1, · · · , x

1
N ),Φ(x2

1, · · · , x
2
N )

〉

. (18)

In other words, it is the map that computes inner products
between joint states in the higher-dimensional space of
indicator distributions, without (necessarily) needing to
explicitly construct the indicator distribution representa-
tion (Aizerman et al. (1964) has more on the subject of
kernel functions).

For indicator distributions of the form (2) and the inner
product 〈·, ·〉A defined in the previous section, the corre-
sponding kernel is,

κ((x1
1, · · · , x

1
N ), (x2

1, · · · , x
2
N ))

=

∫

x∈Rn

2
∏

i=1

N
∑

j=1

Aw(δ)(x − xi
j)

=
(

Aw(δ)(x − x2
1) + · · ·+Aw(δ)(x− x2

N )
)

dx

=
∑

i,j

∫

x∈Rn

Aw(δ)(x − x1
i )Aw(δ)(x − x2

j)dx . (19)

For the case of Gaussian κ as in (14),
∫

x∈Rn

Aw(δ)(x − x1)Aw(δ)(x − x2)dx

=

∫

x∈Rn

exp(−(x− x1)TQ(x− x1))

· exp(−(x− x2)TQ(x− x2))dx

= exp(−
1

2
(x2 − x1)TQ(x2 − x1))

·

∫

x∈Rn

exp(−(x− x̄12)TQ(x− x̄12)dx

= exp(−
1

2
(x2 − x1)TQ(x2 − x1))

√

πn

detQ
(20)

for any x1, x2 ∈ Rn (where x̄12 = (x1 + x2)/2), and so

κ((x1
1, · · · , x

1
N ), (x2

1, · · · , x
2
N ))

=

√

πn

detQ

∑

i,j

exp(−
1

2
(x2

j − x1
i )

TQ(x2
j − x1

i )) . (21)

More generally, we may be interested in allowing indicator
distributions of the form (3). In this case we have another
embedding Φ2 which maps (3), thought of as a formal
sum, to the distribution encoded by the same, and its
corresponding kernel is

κΦ2(c
1
1δ(x − ξ11) + · · ·+ c1Kδ(x− ξ1K1),

c21δ(x − ξ21) + · · ·+ c2Kδ(x− ξ2K2))

=

√

πn

detQ

∑

i,j

c1i c
2
j exp(−

1

2
(x2

j − x1
i )

TQ(x2
j − x1

i )) (22)

which differs from (21) by the factors c1i , c
2
j which are now

included.

The significance of the kernel function we have obtained
is that it gives the original indexed representation a
permutation-invariant geometry which can be used to
reason about multiagent control laws without necessarily
needing to work at the level of partial differential equa-
tions. Moreover this geometry can be understood con-
cretely in terms of indicator distributions, and this ties
the Eulerian and Lagrangian approaches together.

5. A FINITE-STATE-SPACE ANALOGUE

One interpretation of the Eulerian view of multiagent
systems which we have presented so far is that, rather
than thinking of agents as making decisions about which
actions to take, one can instead view the states themselves
as making decisions about how many agents should be
entering or leaving them – subject to the dynamical
constraints imposed by the number of agents in each state.
We may take this interpretation very literally, and consider
situations in which, e.g., rooms of a building decide which
robots should enter them at any time, or in which sectors of
a warzone command various autonomous support vehicles
to enter or leave them in response to changing demands or
in order to meet an objective.

In short, what we are considering is “dumb robots in a
smart environment.”

A qualitative observation which motivates this is the
complementary behavior of the mass distribution m of
the agents (the Eulerian setting) to that of their joint
state vector x (the Lagrangian setting). We observe that
in the Eulerian setting, consensus corresponds to a very
“peaky” distribution, in which all mass is concentrated at
one point, whereas in the Lagrangian setting, consensus
corresponds to a “flat” distribution of states over agents,
in which x1 = x2 = · · · = xN . Hence we can expect, more
generally, that each controller in the Lagrangian setting
corresponds to a “dual” controller in the Eulerian setting,
and that certain control objectives may be easier to achieve
in one setting or in the other; this is the idea explored in
section 5.1.

The finite state spaces of these examples – e.g. rooms of a
building – also motivate the construction of a finite-state-
space analogue to the indicator-distribution representation
we have discussed so far. To this end, we assume the
existence of a set R = {1, · · · , N} of rooms, connected
in an undirected graph Gp = (R,Ep ⊂ R × R), in which
edges indicate physical paths – e.g., hallways – by which
agents can move between them. We likewise assume that
the rooms can communicate via some network, represented
as another graph Gc = (R,Ec ⊂ R × R). Finally, we
associate to each room i ∈ R a number mi ∈ R of agents
currently in that room, and thereby define the vector
m = (m1, · · · ,mN ) ∈ RN [The relaxation to allow for



a real (rather than only natural) number of agents in each
room can be viewed as a limiting case for a very large
number of agents]. Assuming either a discrete timestep or
Lebesgue sampling, the dynamics of the resulting system
are summarized,

m[k + 1] = m[k] +Du[k] ∀k ∈ N (23)

subject to the elementwise state constraint m[k] ≥ 0 for
all k ∈ N, where D is the incidence matrix associated with
Gp and u[k] ∈ R|Ep|.

5.1 Example: Vacuuming an Office Building

As a particular concrete example, suppose that each room
of an office building has been outfitted with a short-
range (e.g., Bluetooth) wireless access point, each with
some computing capacity that we can use, and that we
have a number of vacuum-cleaning robots which we would
like the access points to deterministically direct through
the building to achieve a uniform distribution over the
rooms, thereby minimizing the amount of dirt left in the
worst-cleaned room. The question then becomes how the
rooms of the building, in a distributed way and while
respecting state constraints, can choose to direct robots
between themselves so that they are eventually distributed
uniformly throughout the building. This is a version of the
coverage problem, and it will turn out to be particularly
easy to solve in the Eulerian setting.

For the purposes of this example we will assume Gp = Gc =
G – i.e., that the physical and network topologies are the
same – in which case the controller

u[k] = −γDTm[k] (24)

for some γ > 0 gives the closed-loop dynamics

m[k + 1] = (I − γDDT )m[k]

= (I − γL)m[k] (25)

where L is the graph Laplacian for G. Since L is posi-
tive semidefinite (see Mesbahi and Egerstedt (2010)), the
eigenvalues of the closed-loop system matrix lie within
the unit circle for sufficiently small γ (for all but the
1 eigenvector, whose eigenvalue is exactly 1), e.g. γ =
1
2 ||L||2, and so the system is stable. Moreover, it can be
seen that the given controller satisfies the state constraint
m[k] > 0 ∀k ∈ N.

6. CONCLUSIONS

We have stripped agent identities from the multiagent
modeling machinery by employing an indicator function
representation, and in so doing arrived at an integro-
differential model for multiagent systems which paral-
lels the now-standard graph-theoretic constructions. Along
the way, we proved stability and conservation proper-
ties from within a continuum model, and, guided by
our permutation-invariant representation and the so-called
kernel trick, endowed the traditional vector state space
with a permutation-invariant geometry. Finally, we illus-
trated a qualitative duality between the Eulerian and
Lagrangian approaches by way of a finite-state-space ana-
logue, which demonstrated that for certain problems a
literal interpretation of the Eulerian approach can result
in very simple controllers.
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